
TESTING ENVIRONMENT FOR INNOVATIVE TRANSPORT PROTOCOLS

Phillip T. Conrad

Computer and Information Science Department
Temple University, Philadelphia, PA 19122 USA

Email: conrad@acm.org

Paul D. Amer
Mason Taube
Gul Sezen
Sami Iren

Armando Caro

Computer and Information Science Department
University of Delaware, Newark, DE 19716 USA
Email: famer,taube,sezen,iren,acarog@cis.udel.edu

ABSTRACT

This paper describes the development of a test envi-
ronment for innovative transport protocols. Central
to this work is the development of a Universal Trans-
port Library (UTL). UTL is a library of transport
protocols that provides application programmers the
ability to write to a single Application Programming
Interface (API), then test their application with
many di�erent transport protocols. UTL also allows
for rapid prototyping of transport protocols at user
level. UTL has been incoporated into two multime-
dia communication systems designed to provide bet-
ter performance over lossy networks by using inno-
vative transport protocol features: NETCICATS (a
Network-Conscious Image Compression and Trans-
mission System) and ReMDoR (a Remote Multime-
dia Document Retrieval system). These three tools
facilitate the evaluation of 
exible transport pro-
tocols and compression techniques for multimedia
communications over lossy battle�eld networks. 1

1 INTRODUCTION

Traditional transport protocols that operate over
unreliable battle�eld networks provide an \all-or-
nothing" choice for transport Quality of Service

1Prepared through collaborative participation in the Ad-
vanced Telecommunications/Information Distribution Re-
search Program (ATIRP) Consortium sponsored by the U.S.
Army Research Laboratory under the Federated Laboratory
Program, Cooperative Agreement DAAL01-96-2-0002. This
work also supported, in part, by the US Army Research Of-
�ce (ARO) (DAAH04-94-G-0093). The views and conclu-
sions contained in this document are those of the authors and
should not be interpreted as representing the o�cial policies,
either expressed or implied of the Army Research Laboratory
or the U.S. Government.

(QoS); either total order and reliability (e.g., TCP)
or no guarantees at all (e.g., UDP). The Partial Or-
der/Partial Reliability (PO/PR) hypothesis is that
since, for ARQ-type protocols, improvements in re-
liability and order come at a cost of worsening delay
and throughput, some applications may bene�t from
a service in between that provided by TCP and that
provided by UDP. A PO/PR service allows the ap-
plication to make tradeo�s between order/reliability
and delay/throughput on a message-by-message ba-
sis (see for example, RFC1693) [1, 4, 6].

Our investigation of this hypothesis has two goals:
(1) to understand and characterize the nature of
these tradeo�s via analysis, simulation and exper-
imentation, and (2) to implement a transport pro-
tocol that provides a service user with as much 
ex-
ibility as possible in selecting the best tradeo� for a
particular application.

This hypothesis must be investigated in the context
of speci�c applications. Two applications that may
be part of a digital battle�eld scenario have been
developed within the University of Delaware's Pro-
tocol Engineering Lab to serve as this testbed: (1) a
Network-Conscious Image Compression and Trans-
mission System (NETCICATS), and (2) a Remote
Multimedia Document Retrieval (ReMDoR) system.
Section 2 overviews these two systems.

Speci�cally, this article describes the development
of the Universal Transport Library (UTL) in Sec-
tion 3. UTL allows developers to write applications
that can take advantage of the innovative protocol
features, and allows protocol designers to rapidly
prototype new transport services.



2 OVERVIEW OF NETCICATS
AND ReMDoR GOALS

2.1 NETCICATS

NETCICATS is an approach to image compres-
sion that seeks not solely to maximize compres-
sion, but rather to optimize overall performance
when compressed images are transmitted over a
lossy packet-switched network such as a battle�eld
network [2, 9, 10, 11]. Using an Application Level
Framing philosophy, an image is compressed into
path MTU-size Application Data Units (ADUs) at
the application layer. Each ADU \carries its se-
mantics"; that is, each ADU is a self-contained unit
possessing all information necessary for a receiver
to decode and display the information within that
packet. Therefore, each piece of independent infor-
mation can be delivered out-of-order to the receiv-
ing application, thereby enabling faster progressive
display of images.

2.2 ReMDoR

ReMDoR is a multimedia document retrieval sys-
tem that allows authors to specify synchronization
requirements and varying degrees of reliability for
multimedia elements [7]. The basic model is simi-
lar to that of the World Wide Web; documents are
available on a server and are retrieved via a browser.
Unlike Web documents, however, ReMDoR docu-
ments are temporal|they have a time dimension
requiring synchronization of elements such as audio,
video, still-images, text, pauses, and interactions.

The ReMDoR browser is similar to traditional web
browsers, making experiments convenient. It has ca-
pabilities that support experimentation with inno-
vative protocols and data compression techniques,
such as (1) the ability to easily incorporate new
image formats, and (2) the ability to record the
\response-time" of the application on an object-by-
object basis [3].

2.3 Shared Requirements

The underlying hypothesis of both NETCICATS
and ReMDoR is that PO/PR transport protocols
allow the application to deliver more information to
the user sooner than would be the case with tradi-
tional protocols. As such, the experiments planned
for both systems involve some common elements.

In both cases it will be necessary to run the ap-
plications over more than one transport protocol|
perhaps several protocols o�ering a variety of levels
of order and reliability, perhaps a variety of 
ow

control techniques, etc. The ideal test environment
is one where each application can switch transport
protocols by selecting from a pull-down menu, or
passing a di�erent command line option. Such an
environment would facilitate comparisons between
the performance of some protocol \A" vs. another
protocol \B". Section 3 describes how the Univer-
sal Transport Library helps an application developer
achieve this 
exibility.

Another requirement is to be able to automate the
running of experiments over alternate transport pro-
tocols and network conditions; i.e., to control the
entire experimental framework (application settings,
network loss rates, transport protocol) from an auto-
mated script, and automatically collect data (such
as response-time, network utilization, etc.). This
capability would allow experiments to be repeated
without human intervention.

3 UNIVERSAL TRANSPORT
LIBRARY (UTL)

3.1 Introduction

UTL is a library of transport protocols that pro-
vides 
exible QoS tradeo�s. UTL was developed at
the University of Delaware in support of transport
protocol research|particularly ReMDoR and NET-
CICATS.

UTL serves two functions:

� It provides a common API wrapper around a
range of transport protocols. This wrapper
allows application programmers to write code
that is independent of the underlying transport
protocol.

� It provides a framework for development of in-
novative transport protocols by allowing proto-
cols to be composed from smaller units of pro-
cessing.

3.2 Motivation

Testing the PO/PR hypothesis for ReMDoR and
NETCICATS applications involves gathering data
on the performance of these applications running
over various transport protocols. UTL was pro-
posed as a solution to two problems that arose in
the course of this project.

The �rst of these problems arose in the develop-
ment of the initial ReMDoR prototype. The vari-
ous protocols required di�erent programming styles,

2



and had di�erent Application Programming Inter-
faces (APIs). Writing special case code to handle
each protocol was causing the application program-
ming to become unreasonably complex. Knowing
that NETCICATS development would have to han-
dle the same issues, we determined it would be wise
to develop a a common API for various transport
protocols.

The second problem arose in considering how to
compare PO/PR service to ordered/reliable service.
The most common example of an ordered/reliable
transport service is TCP. It is interesting to com-
pare PO/PR service with TCP, since many cur-
rent applications use TCP. Important features of
TCP include its facilities for 
ow control and con-
gestion avoidance; these features enable applications
to fairly share available bandwidth on IP networks.
However, TCP congestion avoidance features slow
it down relative to protocols lacking such features.
This presents an \apples vs. oranges" type of prob-
lem: if one is trying to design an experiment to
compare, say, the partially-ordered/reliable service
of POCv2, against the ordered/reliable service of
TCP, a POCv2 vs. TCP comparison is unfair if
POCv2 does not implement a 
ow control scheme
similar to that of TCP.

We are pursuing two solutions to this problem:

� short-term, we plan to develop an in-house or-
dered/reliable protocol without TCP 
ow con-
trol and compare this protocol with POCv2,
thus allowing a fair \Apples and Apples" com-
parison,

� long-term, we plan to add TCP-compatible con-
gestion avoidance features into the protocols de-
veloped at UD (k-XP, POCv2, TRUMP [8]),
and compare these protocols directly with TCP.

We determined that the best way to approach both
of these projects was to �rst develop a framework
for the rapid prototyping and e�cient development
of usable transport protocols. Hence UTL is an at-
tempt to address both the need for a common Trans-
port API, and a framework for transport protocol
development.

3.3 How UTL Is Used

UTL is a library of C functions that a programmer
can link in with an application to enable that appli-
cation to access several connection-oriented trans-
port services through a single API. The application
can then vary the transport protocol used by alter-
ing a single parameter on the \listen" call (passive
open) or the \connect" call (active open).

By allowing easy experimentation with di�erent
transport protocols, the experimenter can \isolate"
particular aspects of transport services to better un-
derstand the e�ects of each in isolation. Figure 1 il-
lustrates how UTL is used by client/server applica-
tions, such as ReMDoR and NETCICATS. The var-
ious services available to applications via the UTL
API are presented in Table 1.

The UTL API is similar to the Berkeley Sockets
described in many texts on Unix network program-
ming [12]. What all UTL services have in common is
that they are connection-oriented, message services.
Where they di�er is in order, reliability, and other
features (see Table 1).

For each feature of UTL, there is a \fall-back" posi-
tion to a reasonable default. The UTL API provides
several innovative features, but the application only
has to be bothered with the ones it �nds useful; fea-
tures that are not useful for a particular application
can be safely ignored. The provision of fallbacks to
default behaviors simpli�es the use of the UTL API
when its more advanced features are not required
for a given application.

As an example of a fallback, consider the notion of
a \service pro�le." The UTL API allows an ap-
plication to specify a service pro�le, which is a data
structure de�ning a partial order and reliability vec-
tor [7]. The service pro�le is only used when the
underlying protocol supports partial order and par-
tial reliability. If the application has no need to
take advantage of such features, it can ignore the
parts of the API which allow the service pro�le to
be speci�ed. In this case, a default partial order of
a \chain" (total order) with all objects reliable is in
e�ect. Thus an application programmer can make
use of UTL without knowing about service pro�les;
if no service pro�le is de�ned by the application,
protocols providing PO/PR service will default to
ordered/reliable service.

Note that a particular application will not necessar-
ily function over every UTL service. If an appli-
cation depends on ordered data delivery to operate
correctly, and it is run over an unordered service,
the application will likely fail to perform its task cor-
rectly. For any given application, the designer may
want to restrict the choices of UTL services available
to the user to a reasonable subset. Within that sub-
set, however, it is still useful to be able to 
exibly
choose from a range of options when running exper-
iments. It can also be instructive to demonstrate
exactly how a particular application fails when an
unsuitable transport service is chosen.

The current de�nition of the UTL library describes
six transport services (see Table 1), and one \pass-

3



Lossy Network

Client Server

UTL API

TX PTSP POC
v2 XP TRUMP RAWUC

UTL API

TX PTSP POC
v2 XP TRUMP RAWUC

Figure 1: Client/Server Application over Internet via UTL

UTL API
TX PTSP POCv2 XP UC RAW

•Ordered
•Reliable

•Partially
 ordered
•Reliable
•Sync 
 support

•Ordered
•Reliable
•Access to
 buffered
 data

•Partially
 ordered
•Partially
 reliable
•Sync 
 support
•Access to
 buffered
 data

•Unordered
•Partially
 reliable

•Unordered
•Unreliable

•Pass-thru
 service

TRUMP

•Unordered
•Partially
 reliable
(time-based;
application 
provides
staleness time 
for each 
message)

Table 1: UTL API Layer and Transport Services Provided

thru" service to allow access to raw �le descriptors.
The pass-thru service is provided to allow applica-
tions to easily multiplex and demultiplex UTL style
communication with regular access to Unix �les and
sockets using a select() style mechanism.2

The UTL components visible to a UTL applica-
tion user are the header �le (#include <utl.h>)
and the object library of C functions (libUTL.a).
The functions in utl.h are similar to those of the
sockets API; familiar functions such as listen(),
connect(), accept(), read(), write() become
utl_Listen(), utl_Connect(), utl_Accept(),
utl_Read(), and utl_Write. The parameters are
slightly di�erent from the sockets API counterparts;
mainly in ways that facilitate reduction in data
copying between the application and the user-level
transport protocol implementations within the UTL
library.

Another advantage of the UTL approach is that it
allows for rapid prototyping of protocols. Within

2
select() is part of most Unix implementations of the

sockets API; see [12] for more details on the select() method
of I/O multiplexing/demultiplexing.

UTL, transport protocol development is done at the
\user level", not in the kernel. New transport ser-
vices are layered on top of UDP or TCP. This makes
code easier to write and debug, and more portable.
UTL's layered model allows for code reuse; for exam-
ple, one can write \segmentation/reassembly" once,
and then reuse this functionality in several proto-
cols. One can also add new versions of protocols in
parallel. For example, one could have two versions
of partial reliability running side by side each with
a di�erent 
ow-control/congestion-avoidance tech-
nique. The two versions of partial reliability could
then be incorporated into di�erent transport ser-
vices involving various kinds of reordering, segmen-
tation, and so forth. This 
exible framework for
experimentation is at the heart of the UTL design
philosophy.

3.4 Innovative Transport Protocol Features

In addition to allowing 
exibility in terms of order
and reliability, some additional special features have
been incorporated into some of the protocols within
the UTL framework:

4



� ADN-Cancel. This feature allows cancellation
of messages that have already been submitted
to the transport layer. The application speci-
�es an Application Data Name (ADN) for each
message and can cancel the transmission of any
message (or group of messages) by specifying
its (their) ADN. As an example of the use of
this feature, consider a system for transmitting
images: when the receiver has received enough
data to make a decision regarding the image
(e.g., for tele-medicine: \transport patient or
do-not-transport", or in situational awareness:
\friend vs. foe", \target vs. non-target"), the
receiver can cancel the transmission of all addi-
tional packets carrying an ADN for the image in
question, without severing the connection. This
may be particularly useful in situations where
multi-access communication make bandwidth a
scarce commodity.

� Support for Application Level Framing and
Integrated Layer Processing. The \Bu�er-
Access" feature provides access to out-of-order
bu�ered data so the application can start
presentation-layer conversions (such as decryp-
tion or decompression) earlier, even if there is
a higher-level requirement for ordered data de-
livery.

� Explicit Release. This feature is used with
partial-order to simulate petri-net based syn-
chronization of multimedia documents [7].

4 CONCLUSIONS

We have described how the Universal Transport Li-
brary and improved ReMDoR browser will provide
an e�ective test environment for the evaluation of
innovative transport protocols for multimedia appli-
cations over lossy networks, such as battle�eld net-
works and congested networks. Examples of some
of the experiments that the UTL framework make
possible are:

� comparing the overhead of PO/PR service vs.
ordered/reliable, unordered/unreliable. This
could be accomplished using UTL by running a
test application over POCv2 with \total order,
everything reliable" or \no order, everything
unreliable" as the service pro�le, and then com-
paring the performance to that of the same ap-
plication running over UC (no ordering layer),
and SP (total ordering layer) [5].

� comparing PO/PR service (POCv2) to or-
dered/reliable service (TX, SP) in terms of de-

lay, reliability trade-o�s. It is easy to see that
PO/PR service provides no bene�t if the net-
work has no loss or reordering. What is inter-
esting to determine is the loss rate at which
PO/PR service starts to provide a bene�t that
can be perceived by the user. This could be
done using the ReMDoR browser to measure
delay of presentation objects, over TX, SP and
POCv2. For POCv2, one can also measure the
rate at which POCv2 declares objects lost in
the case of partially-reliable service.

5 REFERENCES

[1] P. Amer, C. Chassot, T. Connolly, M. Diaz, and P. Con-
rad. Partial order transport service for multimedia and
other applications. IEEE/ACM Trans on Networking,
2(5):440{456, October 1994.

[2] P. Amer, S. Iren, G. Sezen, P. Conrad, M. Taube,
and A. Caro. Network-conscious GIF image transmis-
sion over the Internet. In 4th International Work-
shop on High Performance Protocol Architectures (HIP-
PARCH'98), June 1998.

[3] A. Caro. Remdor 2.0: Remote multimedia document re-
trieval over partially-ordered, partially-reliable transport
protocols, May 1998. BS Thesis, CIS Dept., University
of Delaware.

[4] T. Connolly, P. Amer, and P. Conrad. An extension to
TCP: Partial order service. RFC 1693, November 1994.

[5] P. Conrad. Order, reliability, and synchronization in
transport layer protocols for multimedia document re-
trieval. PhD Dissertation, CIS Dept. University of
Delaware, (in progress).

[6] P. Conrad, P. Amer, E. Golden, S. Iren, R. Marasli,
and A. Caro. Transport qos over unreliable networks:
No guarantees, no free lunch! In IFIP Fifth Interna-
tional Workshop on Quality of Service (IWQOS '97),
New York, NY, May 1997.

[7] P. Conrad, E. Golden, P. Amer, and R. Marasli.
A multimedia document retrieval system using partially-
ordered/partially-reliable transport service. In Multime-
dia Computing and Networking 1996, San Jose, CA, Jan-
uary 1996.

[8] E. Golden. TRUMP: Timed-reliability unordered mes-
sage protocol, December 1997. MS Thesis, CIS Dept.,
University of Delaware.

[9] S. Iren, P. Amer, A. Caro, G. Sezen, M. Taube, and
P. Conrad. Network-conscious compressed image trans-
mission over battle�eld networks. In MILCOM '98, Bed-
ford, MA, October 1998.

[10] S. Iren, P. Amer, and P. Conrad. NETCICATS: network-
conscious image compression and transmission system.
In Fourth International Workshop on Multimedia Infor-
mation Systems (MIS'98), Istanbul, Turkey, September
1998.

[11] S. Iren, P. Amer, and P. Conrad. Network-
conscious compressed images over wireless networks. In
5th International Workshop on Interactive Distributed
Multimedia Systems and Telecommunication Services
(IDMS'98), Oslo, Norway, September 1998.

[12] W. Stevens. UNIX Network Programming. Prentice-Hall,
1990.

5


