
TRANSPORT LAYER LOAD BALANCING IN FCS NETWORKS
�

Janardhan R. Iyengar, Paul D. Amer, Armando L. Caro, Jr.
Protocol Engineering Lab

Computer and Information Sciences
University of Delaware�

iyengar, amer, acaro � @cis.udel.edu

Randall R. Stewart
Cisco Systems Inc.

rrs@cisco.com

ABSTRACT

The Stream Control Transmission Protocol (SCTP) allows
for end-to-end load balancing in FCS networks to be per-
formed at the transport layer, through repeated changeover.
We present a problem in the current SCTP (RFC2960) specifi-
cation that results in unnecessary retransmissions and “TCP-
unfriendly” growth of the sender’s congestion window during
certain changeover conditions. We first illustrate the problem
using an example scenario. We then briefly describe the pro-
posed solutions for problem and our future direction.

1 INTRODUCTION

A node is multihomed if it can be addressed by multiple IP
addresses [3], as would be the case when the host has multiple
network interfaces. Network layer redundancy allows access
to a host even if one of its IP addresses becomes unreachable;
ideally packets can be rerouted to one of the host’s alternate
IP addresses. However, since IP is connectionless, end-to-end
session persistence under failure conditions becomes the re-
sponsibility of the transport layer and above. To provide for
such fault tolerance, the Stream Control Transmission Proto-
col (SCTP) supports multihoming at the transport layer. SCTP
sessions, or associations, can dynamically span over multiple
local and peer IP addresses so that an association can remain
alive even if one of the endpoints’ addresses becomes unreach-
able. Multihoming also allows for end-to-end load balancing
to be performed at the transport layer. Bearing in mind that all
�
Prepared through collaborative participation in the Communications

and Networks Consortium sponsored by the U. S. Army Research Labo-
ratory under the Collaborative Technology Alliance Program, Cooperative
Agreement DAAD19-01-2-0011. The U. S. Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation thereon.

resources available should be optimally used in FCS networks,
our investigation focusses on utilizing all network resources
visible at the transport layer.

SCTP [9] is a recent standards track transport layer protocol in
the Internet Engineering Task Force (IETF). Of the salient fea-
tures that distinguish SCTP from TCP, we concern ourselves
with multihoming. SCTP multihoming allows binding of one
transport layer association to multiple IP addresses. This bind-
ing allows an SCTP sender to send data to a multihomed re-
ceiver through different destination addresses. For instance, in
figure 1, � could send data to � using destination address ���
or �	� . SCTP’s multihoming feature was motivated by fault
tolerance; if one destination address becomes unreachable,
the destination can still send and receive via other interfaces
bound to the association.

In a multihomed SCTP association, the sender transmits data
to its peer’s primary destination address. SCTP provides for
application-initiated changeovers so that the sending applica-
tion can change the sender’s primary destination address, thus
moving the outgoing traffic to a potentially different path1.
This feature can be used to perform end-to-end load balanc-
ing using SCTP, thus helping FCS network elements exploit
all network resources visible at the transport layer. We un-
covered a problem in the current SCTP (RFC2960) specifica-
tion [9] that results in unnecessary retransmissions and “TCP-
unfriendly” growth of the sender’s congestion window under
certain changeover conditions.

In section 2, we present a specific example which illus-
trates the problem of cwnd overgrowth with SCTP’s currently

1SCTP was designed as a transport protocol for telephony signaling in
SS7 networks. In an SS7 network the upper layers can dictate to which
destination address packets will be sent, motivating the application-initiated
changeover feature in SCTP.

1 of 5

specified handling of changeover. Section 3 presents two
changeover aware congestion control algorithms: Conserva-
tive CACC (C-CACC) and Split Fast Retransmit CACC (SFR-
CACC), and the Rhein algorithm. In light of the bigger prob-
lem of end-to-end load balancing, we conclude with questions
which describe our future direction in section 4.

2 CONGESTION WINDOW OVERGROWTH

NetworkHost A

Path1

Path2

A1

A2

Host B
B1

B2

Figure 1: Architecture used in example

In this section, we present an example illustrating the oc-
curence of cwnd mishandling and unnecessary retransmissions
with SCTP’s currently specified handling of changeover. The
example uses the architecture shown in figure 1. Endpoints �
and � have an SCTP association between them. Both end-
points are multihomed, � with network interfaces � � and �
� ,
and � with interfaces ��� and � � 2. All four addresses are
bound to the one SCTP association. For several possible rea-
sons (e.g., path diversity, policy based routing, load balanc-
ing), we assume in this example that the data traffic from �
to ��� is locally routed through �� , and from � to � � through
� � . Non overlapping paths are assumed with the bottleneck
bandwidth of path 1 being 10Mbps, and that of path 2 being
100Mbps. The propagation delay of both paths is 200ms, and
the path MTU for both paths is 1250 bytes.

Figure 2 shows a timeline of events for our example. The verti-
cal lines represent interfaces ��� , ��� , � � and � � . The numbers
along the lines represent times in milliseconds. Each arrow
depicts the departure of a packet from one interface and its
arrival at the destination. The labels on the arrows are either
SCTP Transmission Sequence Numbers (TSN) or labels of the
form ��������������������� � . Assuming one chunk per packet, ev-
ery packet in the example corresponds to one TSN. A number
represents the TSN of the chunk in the packet being transmit-
ted. A label �����!���������"�����#� represents a packet carrying a
SACK chunk with cumulative ack ��� , and gap ack for TSNs
����� through ����� . $ � is the cwnd at � for destination ��� , and
$ � is the cwnd at � for destination ��� . $%� and $ � are denoted
in terms of MTUs, not bytes.

2More precisely, & ' , &)(, *#' and *)(are IP addresses associated with
link layer interfaces. Here we assume only one address per interface, so
address and interface are used interchangeably.

The assignments such as initial TSN = 1 and initial time +#,.-
are arbitrary assignments to signify the beginning of the snap-
shot. These assignments are not meant to imply the beginning
of the association. Initially, $ � ,0/ because we assume that
either there has been no transmission to � � before +!,1- dur-
ing the lifetime of the association, or $ � has decayed3 to two2 �43	5 by +6,7- .

2.1 Example Description

The sender (�) initially sends to the receiver (�) using pri-
mary destination address ��� . This setting causes packets to
leave through ��� . Assume these packets leave the trans-
port/network layers, and get buffered at � ’s link layer �8� ,
whereupon they get transmitted according to the channel’s
availability. This initial condition is depicted in figure 2 at
time +9,:- , when in this example � has 50 packets buffered
on interface ��� .

At +,<; , as TSNs 1 - 50 are being transmitted through � � ,
the sender’s application changes the primary destination to � � ,
thus requiring any new data from � to be sent to � � . In the
example, we assume TSN 51 is transmitted to the new primary
at +#,1; . We refer to this moment as the changeover time. This
new primary destination causes new TSNs to leave the sender
through � � . Concurrently, the packets buffered earlier at ���
are still being transmitted. Previous packets sent through � � ,
and the packets sent through � � , can arrive at the receiver �
in an interleaved fashion on interfaces �8� and � � respectively.
In figure 2, TSNs 1, 51, 52 and 2 arrive at times 21, 21.1, 21.2,
22, respectively. This reordering is introduced as a result of
changeover; the specific times depend on the delays of paths 1
and 2.

The receiver starts reporting gaps as soon as it notices reorder-
ing. If the receiver communicates four missing reports to the
sender before all of the original transmissions (TSNs 1 - 50)
have been acked, the sender will start retransmitting the un-
acked TSNs. SCTP’s Fast Retransmit algorithm is based on
TCP’s Fast Retransmit algorithm [4], with the additional use
of selective acks and a modification to handle some cases of
reordering4 . Accordingly, the SACKs resulting from the re-
ceipt of TSNs 51-54 will be the only ones generating missing
reports. The SACKs received by � on � � at +=,?>@;BAC; and
+D,E>@;BAF/ will be considered as the first and second missing

3The cwnd for a destination address decays exponentially if no data is
transmitted to that destination address [9].

4 [7] goes hand-in-hand with RFC2960. The Implementor’s guide main-
tains all changes and additions to be included in RFC2960’s next version.
All implementations are expected to carry the specifications and modifica-
tions in this guide.

2 of 5

55(C2=2) 81.3

S2(51-52)

21
1

S1
21.1
21.2

(C2=2) 41.2

51

S41(51-53)

S41(51-54)

S1(51-51)

S1(51-52)

61.2
61.3

S3(51-52)

3
2

22
23

43, 44 (rtx)

(C2=3) 82

(C2=4) 83
45, 46 (rtx)

81

61
S41(51-52)

62
63
64 82

83
84

S42(51-54)S43(51-54)S44(51-54)

41

42
43
44

69

89

S49 (51-54)

49

70

90
S54

50

52

53
54

47, 48 (rtx)

B1
A1 A2 B2Sender

A
Receiver

B
Receiver

B

(C2=2) 2

41

42 (rtx)

* TSNs 1-50 have been buffered at the sender’s link
layer corresponding to A1 and are being sent.

101.3
101.4

102.1

104.1
49, 50 (rtx)56, 57

65

85

S45(51-54)

45

66

86

S46(51-54)

46

62, 63

103.1

1-50*

105.1

106.1

42
43

(C2=2) 41.1

(C2=2) 81.2

(C2=2) 1

(C2=5) 84

(C2=6) 85

(C2=7) 86

(C2=10) 89
(C2=11) 90

0

64, 65

Figure 2: Timeline for the example

reports for TSNs 2 - 50. Since these SACKs do not carry new
cumulative acks, they do not cause growth of $ � . Between
+#,.>G/ and +#,IHJ; , the cumulative ack in the SACKs received
by � on ��� increases as a consequence of the original trans-
missions to destination � � reaching � . In this period, � re-
ceives 40 SACKs which incrementally carry cumulative acks
of 2 - 41.

The SACKs received by � on �9� at +�,KHJ;BAF/ and +,KHJ;BAFL
carry a cumulative ack of 41, and are the third and the fourth
missing reports for TSNs 42 - 50. Upon the fourth missing
report, � retransmits only TSN 42, since $ � permits only one
more packet to be outstanding. Note that this falsely triggered
retransmission leads to an unnecessary reduction of the $4� by
half, since the sender infers congestion from ��� to ��� . At
+M,NHO/ , the SACK for the original transmission of TSN 42
reaches � on ��� . Since the sender cannot distinguish between
SACKs generated by transmissions from SACKs generated by
retransmissions, this SACK incorrectly acks the retransmis-
sion of TSN 42, thereby increasing $ � by one, reducing the
amount of data outstanding on destination ��� , and triggering
the retransmission of TSNs 43 and 44. At +P,QHOL , the SACK
for the original transmission of TSN 43 arrives at � on �8� .
As before, this SACK acks the retransmission (of TSN 43),
further incorrectly increasing $ � , and triggering retransmis-
sion of TSNs 45 and 46. This behaviour of SACKs for origi-
nal transmissions incorrectly acking retransmissions continues

until the SACKs of all the original transmissions to ��� (up to
TSN 50) are received by A. Thus, the SACKs from the origi-
nal transmissions cause $ � to grow (possibly drastically) from
wrong interpretation of the feedback.

2.2 Discussion

While the values chosen in our example illustrate but a sin-
gle case of the congestion window overgrowth problem, our
preliminary investigation shows that the problem occurs for a
range of R propagation delay, bandwidth, MTU S settings. For
example, with both paths having RTTs of 200ms (bandwidth =
100Kbps, propagation delay = 40ms) and MTU = 1500 bytes,
the incorrect retransmission starts much earlier (at TSN 3), and
the cwnd overgrowth is even more dramatic.

The congestion window overgrowth problem exists even if the
buffering occurs not at the sender’s link layer, but in a router
along the path (in figure 1, path 1). In essence, the trans-
port layers at the endpoints can be thought of as the send-
ing and receiving entities, and the buffering could potentially
be distributed anywhere along the end-to-end path. Further,
the reduction in $ � causes the sender to reduce its sending
rate on path 1 unnecessarily. In our preliminary investigation
of load balancing, we have observed multiple occurrences of
such false retransmissions. Such false retransmissions cause
the sending rate to reduce drastically on path 1, resulting in

3 of 5

suboptimal utilization of the path.

3 PROPOSED SOLUTIONS

The TCP-unfriendly cwnd growth and incorrect retransmis-
sions during changeover occur due to a current inadequacy of
SCTP - either (i) the sender is unable to distinguish SACKs
for transmissions from SACKs for retransmissions, or (ii) the
sender’s congestion control mechanism is unaware of the oc-
currence of a changeover, and hence is unable to identify re-
ordering introduced due to changeover. Addressing either of
these inadequacies will solve the problems of TCP-unfriendly
cwnd growth and unnecessary retransmissions.

The Rhein Algorithm [6] solves the problems by addressing (i).
The Rhein algorithm is based on the Eifel algorithm, which
uses meta information in the TCP header. This meta infor-
mation is used in disambiguating acks for transmissions from
acks for retransmissions to improve the throughput of a TCP
connection. The Rhein algorithm uses meta information in the
SCTP header to curb the unnecessary cwnd growth and reduc-
tion due to spurious retransmissions. In our initial conception
of the Rhein algorithm, each data packet has to carry an extra
Retransmission Identifier (RTID) Chunk, and each SACK has
to carry an extra RTID Echo. Additional complexity is also
introduced at the sender and receiver for processing these new
chunks.

The Changeover aware congestion control (CACC) algo-
rithms solve the problem by addressing (ii). In other words,
the CACC solutions introduce changeover awareness in the
sender’s congestion control mechanism. The cwnd overgrowth
occurs due to the sender misinterpreting SACK feedback,
and incorrectly sending fast retransmissions. CACC algo-
rithms curb the cwnd miscalculations by eliminating these
improper fast retransmissions. The key in a CACC algo-
rithm is maintaining state at the sender for each destination
when changeover happens. On receipt of a SACK, the sender
selectively increases the missing report count for TSNs in
the retransmission list, thus preventing incorrect fast retrans-
missions. [5] describes two CACC algorithms: Conserva-
tive CACC (C-CACC) and Split Fast Retransmit CACC (SFR-
CACC). The C-CACC algorithm has the disadvantage that in
the face of loss, a significant number of TSNs could poten-
tially wait for a retransmission timeout when they could have
been fast retransmitted. The SFR-CACC algorithm alleviates
this disadvantage. [5] provides the details of the CACC algo-
rithms, including verification of the effectiveness of the SFR-
CACC algorithm through ns-2 simulations.

4 ANALYSIS AND FUTURE WORK

Results from [5] suggest that the problem presented in Sec-
tion 2 might not be a “corner case.” By approaching the prob-
lem from different perspectives, the Rhein algorithm and the
CACC algorithms all solve the problem of cwnd overgrowth.
The Rhein algorithm recognizes that this growth occurs due to
the sender’s inability to distinguish between SACKs for orig-
inal transmissions from SACKs for retransmissions. This al-
gorithm does not solve the problem of unnecessary fast re-
transmissions on a changeover. This algorithm also adds the
overhead of an extra chunk for every SCTP packet.

The CACC algorithms maintain state information during a
changeover, and use this information to avoid incorrect fast
retransmissions. These algorithms have the added advantage
that no extra bits are added to any packets, and thus the load
on the wire and network is not increased. One disadvantage
of the CACC algorithms is that some of the TSNs on the old
primary are ineligible for fast retransmit. Furthermore, com-
plexity is added at the sender to maintain and use the added
state variables.

We have implemented SFR-CACC in the NetBSD/FreeBSD
release for the KAME stack [1, 2]. The implementation uses
three flags and one TSN marker for each destination, as de-
scribed in [5]. Approximately twenty lines of $ code were
needed to facilitate the SFR-CACC algorithm, most of which
will be executed only when a changeover is performed in an
association.

In light of the enveloping issue of end-to-end load balancing,
we plan to research the following questions in the future:

T How well do the Rhein and CACC algorithms perform
during cycling changeovers? A changeover where the
sender repeatedly cycles through the destination address
space while sending data is called a cycling changeover.

T In an FCS network wireless environment where paths
have frequent disruptions, would load balancing improve
or degrade overall performance?

T Given the path parameters for all paths between the
sender and the receiver, is it possible for the sender to
send data out of order such that the receiver receives all
data in order? Is it possible for the sender to do the same
while probing for path information at the same time?
This line of thought leads to efficient load balancing for
realtime and/or multimedia transfers.

T What is the effect of performing shared/separate con-
gestion control at the sender among various paths to

4 of 5

the receiver when the bottlenecks along the paths are
shared/separate? This question arises from an inquiry
into the effects of shared/separate bottlenecks on SCTP
congestion control. This study is important for SCTP to
be TCP-friendly in sending data.

5 DISCLAIMER

The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of the
Army Research Laboratory or the U.S. Government.

6 ACKNOWLEDGMENTS

Thanks to Ivan Arias Rodriguez, Vern Paxson, Mark Allman,
Phillip Conrad and Johan Garcia for their comments and in-
puts. Ivan helped in the formulation of the problem.

REFERENCES

[1] The SCTP Homepage. http://www.sctp.org.

[2] Webpage of the KAME project. http://www.kame.net.

[3] R. Braden. Requirements for internet hosts–
communication layers. RFC1122, Internet Engineering
Task Force (IETF), October 1989.

[4] M. Allman et al. TCP Congestion Control. RFC2581,
Internet Engineering Task Force (IETF), April 1999.

[5] Janardhan R. Iyengar, Armando L. Caro Jr., Paul D. Amer,
Gerard J. Heinz, and Randall Stewart. Making SCTP
More Robust To Changeover. Technical Report TR 2002-
03-01, CIS Department, University of Delaware, July
2002.

[6] Janardhan R. Iyengar, Armando L. Caro Jr., Paul D. Amer,
Gerard J. Heinz, and Randall Stewart. SCTP Congestion
Window Overgrowth During Changeover. Proc. SCI2002,
Orlando, July 2002.

[7] R. Stewart, L. Ong, I. Arias-Rodriguez, K. Poon, P. Con-
rad, A. Caro, and M. Tuexen. SCTP Implementers Guide.
Internet Draft: draft-ietf-tsvwg-sctpimpguide-06.txt, In-
ternet Engineering Task Force (IETF), May 2002. (work
in progress).

[8] R. Stewart and Q. Xie. Stream Control Transmission Pro-
tocol (SCTP): A Reference Guide. Addison Wesley, New
York, NY, 2001.

[9] R. Stewart, Q. Xie, K. Morneault, C. Sharp,
H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla,
L. Zhang, and V. Paxson. Stream Control Transmis-
sion Protocol. Proposed standard, RFC2960, Internet
Engineering Task Force (IETF), October 2000.

5 of 5

