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 Abstract - In recent years several enhancements to TCP 
congestion control and loss recovery mechanisms have been 
proposed and accepted as Internet standards. While each 
proposal has been accompanied with related research, a number 
of questions remain to be answered both in the research and the 
implementer community: (i) What is the current deployment 
status of these TCP enhancements in the Internet, (ii) What is the 
effect of TCP enhancements on web based transfers, and (iii) How 
do bulk data transfers benefit from the cumulative addition of 
these TCP enhancements. In this paper, we attempt to answer 
these questions. We consider five TCP enhancements: (1) 
Selective Acknowledgements (SACK) and the SACK-based loss 
recovery algorithm, (2) Increasing Initial Congestion Window, (3) 
Limited Transmit, (4) Appropriate Byte Counting, and (5) Early 
Retransmit. We present results from active measurements 
performed on web servers on the state of deployment of these 
enhancements. Our results show that while several web servers 
support TCP enhancements, the majority still use previous 
standards for congestion control and loss recovery. Using 
simulation, we quantify the cumulative effect of these TCP 
enhancements on web based and bulk data transfers. We hope 
that such an evaluation provides a clearer view of the 
applicability of these enhancements, and further motivation for 
their implementation. 
 

I. INTRODUCTION 
 

 End-to-end congestion control and loss recovery has interested the 
research community for nearly two decades, and still remains one of 
the most prominent areas of networking research. TCP, the Internet’s 
prevalent transport protocol [MC00], uses congestion control and loss 
recovery mechanisms first defined in [JK88] and standardized in 
[APS99]. Recently, five modifications to TCP congestion control and 
loss recovery mechanisms: (1) Selective Acknowledgments (SACK) 
and the SACK-based loss recovery algorithm [MMF+96, BAF+03], 
(2) Increasing Initial Congestion Window [AFP+02], (3) Limited 
Transmit [ABF01], (4) Appropriate Byte Counting [All03], and (5) 
Early Retransmit [AAA+03], have been proposed and accepted as 
Internet standards. The focus of these modifications has been to 
reduce the retransmission timeouts in TCP or to perform finer loss 
recovery. A cumulative assessment of these mechanisms has been 
lacking and requires attention due to the following reasons. First, 
implementers and vendors need to know the performance incentives 
for implementing these enhancements in their TCP stacks and in the 
context of their requirements (i.e., for the category of transfers (mice 
or elephants) they are interested in). Second, researchers who base 
their experiments on TCP need to know if their benchmarks reflect 
the current TCP that is deployed in the Internet. In this paper we 
attempt to answer these questions. 

Several methodologies to measure the support of different TCP 
mechanisms at a remote host have been developed over the years. 
One such methodology is the TCP Behavior Inference Tool (TBIT) 

[TBIT, PF01], which measures the existence of TCP options and 
features in remote web servers. TBIT establishes a user level TCP 
connection to a remote web server and generates requests for a base 
web page. Using the BSD packet filter device [MJ92], TBIT captures 
the incoming packets at the user level and prevents them from 
reaching the kernel. Using special sequences of packets and by 
monitoring the incoming packets, TBIT identifies the TCP protocol 
features of the remote web server. The TBIT packets generated cannot 
be distinguished from legitimate user traffic, thus providing an 
advantage over tools such as NMAP [NMAP] that use special packets 
to perform TCP fingerprinting. Thus, TBIT packets have a minimal 
chance of being blocked by a server firewall. We developed and 
implemented TBIT extensions for Limited Transmit, Appropriate 
Byte Counting, and Early Retransmit and used the already 
implemented tests for determining Initial Congestion Window and 
SACK support. We report on the prevalence of these TCP 
enhancements in a small web server space in the Internet. We hope 
that these results will help researchers update the benchmarks of their 
experiments on the TCP variant prevalent in the Internet [AF99]. 

Each TCP enhancement discussed in this paper proposes to 
improve congestion control and loss recovery. For example, RFC3390 
[AFP+02] for Increasing TCP’s Initial Window allows the limit on the 
initial window of a new TCP connection to be increased up to 4K 
bytes, or roughly three to four packets. Such an increase helps short 
transfers and has minimal effect on bulk data transfers. While each of 
these standards has been accompanied with related research [All98, 
Bal98, PN98, FF96], the cumulative assessment of TCP with all the 
enhancements is lacking. In this paper we present an evaluation of 
current TCP by benchmarking TCP NewReno and comparing it with 
the cumulative addition of TCP enhancements. We present this 
evaluation for web based and bulk data transfers with different 
transfer sizes. We believe that such an evaluation will provide useful 
information to implementers and vendors for considering these 
enhancements. 

The remainder of this paper is organized as follows. Section II 
presents a brief description of the five TCP enhancements under 
study. Section III describes the TBIT extensions and the results 
obtained from the tests applied to web servers in the Internet. Section 
IV describes the simulation methodology and evaluation results. 
Section V concludes the paper with a discussion on ongoing and 
future work. 
 

II. TCP ENHANCEMENTS 
 
TCP SACK as defined in [MMF+96] extends TCP to include the 

new SACK option. TCP SACK receivers can report multiple out-of-
order received packets via this SACK option. TCP SACK senders 
retransmit only those packets that have not been acknowledged via 
the SACK option. In TCP without SACK, a sender can determine 
only a single packet loss per round trip time (RTT). TCP SACK 
allows a sender to recover from multiple losses in a single RTT. 
Measurement studies showed that while several servers in the Internet 



were advertising the SACK option, the SACK information was not 
being used to perform finer loss recovery [PF01]. This discovery 
pressed the need for laying out a standard based on [FF96] that 
presents a conservative loss recovery mechanism for TCP SACK 
[BAF+03]. 
 TCP congestion control as defined in [APS99], restricted TCP 
implementations from increasing their initial congestion window 
(cwnd) beyond twice the Maximum Segment Size (MSS). Several 
scenarios demanded an increase in the value of initial cwnd: (i) short 
web based transfers where the web page transfer time is on order of 
RTTs, (ii) Long delay TCP connections, as over satellite channels, 
where RTTs are in order of seconds, and hence lead to slower 
evolution of the cwnd. A new standard specified in [AFP+02] 
increases the limit of 2*MSS for the initial cwnd up to 4380 bytes or 
roughly three to four packets. The minimum initial cwnd that can be 
used by a TCP connection was specified in [AFP+02] to be two 
packets, thus reducing the chances of expiring the delayed Ack timer 
of the TCP receiver for the first window of packets. 
 A TCP receiver on receiving out-of-order packets sends duplicate 
acknowledgments (Acks) cumulatively acknowledging the last in-
order segment received. A TCP sender infers loss of data either if it 
receives a threshold number of duplicate Acks from the receiver, or if 
it does not receive any feedback from the receiver within a 
retransmission time out (RTO) interval. The duplicate Ack threshold 
of inferring loss is currently specified as three [APS99]. A TCP 
sender is not allowed to send new data on the receipt of duplicate 
Acks. This leads to scenarios where a sender does not have enough 
data outstanding that could generate three duplicate Acks if a loss 
occurs, limiting the sender to infer the loss only after RTO amount of 
time. A new standard, Limited Transmit [ABF01], allows TCP 
senders to send new data on the receipt of first two duplicate Acks. 
Limited transmit increases the probability of a sender to receive three 
duplicate Acks when a loss does occur, and decreases the chances of 
an RTO. 
 TCP implementations typically maintain the congestion window 
for a connection in packets as opposed to bytes. On receipt of an Ack 
that acknowledges new data, TCP senders increase the cwnd by one 
packet in slow start, and 1/cwnd packets in congestion avoidance. 
Misbehaving or greedy receivers can generate multiple “split” Acks 
for a single data packet, thus making the sender increase its cwnd by 
several packets [SCW+99]. This aggressive behavior is inappropriate 
as it may result in unfair sharing of the network resources between 
behaving and misbehaving flows. Appropriate Byte Counting (ABC) 
[All03], recently standardized, calls for TCP senders to maintain the 
congestion window in bytes rather than packets and base the increase 
of cwnd on the number of bytes being acknowledged. While 
protecting against misbehaving “split-acking” receivers, ABC also 
improves the evolution of cwnd in the case of Ack loss. ABC defines 
a limit L that is the maximum amount by which a single Ack can 
increase the sender’s cwnd. The standard recommends the 
conservative value of L=1*MSS, and allows an experimental value of 
L=2*MSS.  
 While Limited Transmit helps to reduce the chances of a timeout 
when the number of outstanding segments is less than enough to 
generate three duplicate Acks, it requires a TCP sender to have new 
data to send on the receipt of first two duplicate Acks. Application 
limited flows that generate small bursts of traffic may not be able to 
take advantage of Limited Transmit and may have to rely on an RTO 
to detect packet loss. A recent proposal called Early Retransmit 
[AAA+03] allows application limited TCP senders to retransmit data 
on the receipt of less than three duplicate Acks, in the hope of 
avoiding an expensive RTO. Early Retransmit is currently an Internet 
draft within the IETF [AAA+03] and is in the last phases of being 
standardized. 

III. ACTIVE MEASUREMENTS 
 

 We developed TBIT tests to measure the prevalence of TCP 
enhancements among web servers in the Internet. We used the Initial 
Congestion Window and SACK tests that were already developed in 
the base version of TBIT for our measurements. In the following 
discussion we report on the design of the tests and the results 
obtained. We assume that the reader is familiar with the basic design 
and architecture of TBIT as described in [TBIT, PF01]. 
 
A. Methodology 
 
1. Limited Transmit 
 

The TBIT test to determine if a remote server supports Limited 
Transmit requires that TBIT be aware of the Initial Congestion 
Window (ICW) being used by the remote server. Once the ICW is 
determined the following test can be used to probe a web server for 
Limited Transmit support. 

 
• TBIT establishes a TCP connection with the remote server. 
• TBIT sends the base web page request to the remote server. 
• The remote server starts sending the base web page to the TBIT 

client. 
• TBIT sends an Ack for the 1st packet. 
• TBIT drops the 2nd packet. 
• TBIT sends a duplicate Ack (indicating it is waiting for packet 2) 

in response to the 3rd packet. 
• TBIT does not acknowledge any further packets. 
• TBIT monitors the incoming packets incrementing the "highest 

packet number" for every new data packet received until the 1st 
retransmission. 

• A remote server of a given ICW supports Limited Transmit 
when the highest packet number received by TBIT is: 

(i) ICW = 1, highest packet = 4 
 (ii) ICW = 2, highest packet = 5 

… 
(n) ICW = n, highest packet = n+3 

• If the highest packet received from a server of ICW='n' is less 
than n+3, Limited Transmit is not supported by the remote 
server; 

• If the highest packet received from a server of ICW='n' is greater 
than n+3, TBIT test exits without conclusion; 

 
2. Appropriate Byte Counting (ABC)  
 

We tested the prevalence of ABC in TCP web servers using two 
tests. The first test determines if a remote server supports ABC. The 
second test determines the value of L being used by the servers that 
support ABC. Both tests require that TBIT be aware of the ICW being 
used by the remote server. The first TBIT test to determine if a remote 
server supports ABC is:  
 

• TBIT establishes a TCP connection with the remote server. 
• TBIT sends the base web page request to the remote server. 
• The remote server starts sending the base web page. 
• TBIT sends two split Acks for the 1st packet, each of them 

acknowledging half of the 1st packet. 
• TBIT does not acknowledge any more packets. 
• TBIT monitors the incoming packets incrementing the "highest 

packet number" for every new data packet received until the 1st 
retransmission. 



• If the retransmission contains a sequence number less than that 
of the 2nd packet, TBIT exits without conclusion. 

• A remote server of a given ICW does not support ABC when the 
highest packet number received by TBIT is: 

(i) ICW = 1, highest packet > 3 
(ii) ICW = 2, highest packet > 4 

… 
  (n) ICW = n, highest packet > n+2 

• If for an ICW of ‘n’ packets, the highest packet number received 
is less than ‘n+3’, the remote server supports ABC.  

 
 The second TBIT test for ABC is used to measure the value of L 
being used by the servers supporting ABC. The test is as follows. 
 

• TBIT establishes a TCP connection with the remote server 
• TBIT sends the base web page request to the remote server. 
• The remote server starts sending the base web page. 
• TBIT sends an Ack for the 1st packet. 
• TBIT sends a delayed Ack for the 2nd and 3rd packet. 
• TBIT does not acknowledge any more packets. 
• TBIT monitors the incoming packets incrementing the "highest 

packet number" for every new data packet received till the 1st 
retransmission. 

• If the retransmission contains a sequence number less than that 
of the 4th packet, TBIT exits without conclusion. 

• A remote server of a given ICW uses a value of L for 
Appropriate Byte Counting (ABC) when the highest packet 
number received by TBIT is: 
(i) ICW = 1, highest packet = 6, L=1; highest packet = 7, L=2 

        (ii) ICW = 2, highest packet = 7, L=1; highest packet = 8, L=2 
… 

(n) ICW=n, highest packet=n+5, L=1; highest packet=n+6, L=2 
• If the highest packet received for ICW='n' is greater than n+6, 

TBIT test exits without conclusion; 
• If the highest packet received for ICW='n' is less than n+5, TBIT 

test exits without conclusion; 
 
3. Early Retransmit  
 
 The Early Retransmit mechanism gets invoked in scenarios where 
a TCP sender does not have any new data to send and the amount of 
outstanding data is less than 4*MSS. To generate this scenario, the 
TBIT test required a special byte-range HTTP request [FGM+99] to 
be generated by the TBIT client. The byte range request will ensure 
that the server sends less than 4*MSS packets, to cause a scenario 
where the support for Early Retransmit can be tested. The description 
of the test is as follows. 

• TBIT establishes a TCP connection with the remote server 
• TBIT sends the base page byte range request to the remote 

server, requesting 2*MSS bytes (This will generate 3 packets 
from the remote server: 2*MSS bytes of data + HTTP header). 

• The remote server starts sending the base web page. 
• TBIT sends an Ack for the 1st packet. 
• TBIT drops the 2nd packet. 
• TBIT sends a duplicate Ack (indicating it is waiting for packet 2) 

in response to the 3rd packet. 
• In sequence TBIT now sends an Ack for all the packets. 
• TBIT monitors the incoming packets. 
• If TBIT receives a retransmission for the 2nd packet, the remote 

server supports Early Retransmit; 
else, the remote server does not support Early Retransmit; 

 

B. Results 
 

We performed the TBIT tests described above on a list of top 500 
global web sites based on the rankings by Alexa’s website [ALEXA]. 
Clearly this sample is not statistically significant1. For every server, 
we ran each TBIT test five times. We considered the test on a server 
valid if and only if four or more of these five tests returned the same 
result. The remaining servers were eliminated from the results for that 
particular test. Possible sources of error included packet reordering, 
unexpected drop, no response from the server, besides others [PF01]. 
The MSS used for the tests was 128 bytes with an exception for the 
Early Retransmit test that used an MSS of 1000 bytes. The results of 
the test are shown in Table 1. 

We first ran the Initial Congestion Window test on the list of web 
servers. We found that 62 of the 423 web servers that returned results 
still used an initial window of one packet. This small number is 
surprising as TCP congestion control standardized the use of initial 
window of 2 packets several years back [APS99]. Of the remaining 
361 web servers, 311 used an initial window of two packets. The use 
of initial congestion windows higher than two was found to be 
minimal. While 25 web servers used an initial window of three 
packets, only 17 web servers used initial window of four 
 

TABLE I 
TBIT TEST RESULTS 

 

 
packets. The maximum initial window allowed by [AFP+02], for a 
TCP connection with an MSS of 128 bytes is four packets. Few web 
servers used an initial window of more than 4 packets. Interestingly, 
the web site http://www.netvigator.com used the highest initial 
window of 12 packets! We are currently using fingerprinting tools to 
determine the operating systems being run by the web servers. 

Surprisingly, a large numbers of servers advertised the SACK 
option but less than one third of these servers utilized the SACK 
information to perform sender side loss recovery. We found that 344 
out of the 486 web servers that returned results advertised the SACK 
option. The remaining 142 web servers did not advertise the SACK 
option and hence were not included in the SACK utilization test. We 
tested the 344 web servers that advertised SACK for sender side 
SACK behavior. Only 90 out of the 344 web servers utilized the 
SACK information to perform sender side loss recovery.       
 The Limited Transmit test required that the initial window of the 
remote server be known. From the Initial Window test, we knew the 

Category of TBIT test/  
TCP feature 

Number of web servers 
supporting the feature 

Initial Window (= 1) 62 
Initial Window (= 2) 311 
Initial Window (= 3) 25 
Initial Window (= 4) 17 
Initial Window (> 4) 8 

          SACK Advertised 344 
SACK Information Used 90 

Limited Transmit Supported 99 
Appropriate Byte Counting 

(ABC) 
100 

ABC with L = 1 80 
ABC with L = 2 0 
Early Retransmit 0 



initial window being used by 423 web servers. 224 out of the 423 web 
servers returned results for the Limited Transmit test. We found that 
99 of the 224 web servers that returned results supported Limited 
Transmit, while 125 web servers did not support Limited Transmit. 
 The ABC tests required that the initial window of the remote server 
be known. Thus the test to determine if a remote server supports ABC 
was run on a list of 423 web servers. Out of the 200 servers that 
returned results, 100 supported ABC, while the remaining 100 did not 
support ABC. It is surprising that even though the threat of a 
misbehaving receiver is large, 50% of the servers do not support 
ABC. A misbehaving receiver (i.e., client) can send out multiple split 
Acks for a single data packet and make a non-ABC sender (i.e. 
server) open up its congestion window unfairly in comparison to 
conforming flows. Our next test involved testing the value of the limit 
L (as defined in [All03]) being used by servers that support ABC. We 
found that out of the 80 servers that returned results, all of them used 
L = 1. None of the servers used L = 2. This result is in spirit of the 
recommendation given in [All03]. 
 The Early Retransmit test was run on the entire list of 500 web 
servers. The Early Retransmit test required that the server supports 
byte-range request specified in HTTP/1.1 [FGM+99]. Out of the 500 
web servers only 80 servers returned results, since most of the servers 
did not support the byte-range request. None of the 80 web servers 
supported Early Retransmit! 
 

IV. SIMULATION RESULTS AND ANALYSIS 
 
A. Methodology 
 
 To assess the cumulative effects of the five TCP protocol changes 
we performed simulations using the Network Simulator (ns2) [NS]. 
The topology used for the simulations is illustrated in Fig. 1. All the 
links used in the topology are full duplex. A single TCP source (TCP 
Sender in the topology) is connected to the drop-tail router R1. The 
link connecting the TCP source to the router is of capacity 5Mbps and 
has a one-way propagation delay of 1ms. A single TCP sink (TCP 
Receiver in the topology) is connected to the drop-tail router R2. The 
link connecting the TCP sink to the router is of capacity 5Mbps and 
has a one-way propagation delay of 1ms. To resemble the observed 
nature of traffic on data networks [LTW+93], we use self-similar 
cross-traffic. To generate self-similar cross-traffic, we use four cross-
traffic nodes, each having eight Pareto ON-OFF traffic generators 
connected to routers R1 and R2. Each Pareto source has an average 
ON time of 1ms and OFF time of 9ms. Each cross-traffic node is 
connected to a router (R1 or R2) via a 5Mbps link with a propagation 
delay randomized to be between 1ms and 5ms. The Pareto sources 
connected to the router R1 generate the forward path cross-traffic for 
the TCP data flow, and the Pareto sources connected to the router R2 
generate the reverse path cross-traffic for the TCP Ack flow. The 
cross-traffic packet sizes are chosen to resemble the distribution found 
in the Internet [CAIDA]: 50% are 44B, 25% are 576B, and 25% are 
1500B. Thus the average packet size for the cross-traffic is 541B. A 
link of capacity 1Mbps with a one-way propagation delay of 35ms 
(approximate propagation delay between US coast to coast) forms the 
core link connecting router R1 and R2. The buffer capacity at routers 
R1 and R2 for the core link was set to twice the bandwidth-delay 
product (BDP) of the core link. Using the 2*BDP product and the 
average packet size of 541B, the buffer size at each of the routers R1 
and R2 was set to 16 packets. 
     The Maximum Transmission Unit (MTU) for all links was set to 
the standard Ethernet MTU of 1500B. The TCP sender used an MSS 
of 1460B. The TCP receiver used delayed Acks with a delayed Ack 
timer of 200ms. For all simulations described in this paper, the cross-

traffic was allowed to run for 10s before the TCP sender began 
sending data. 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Network topology for simulations 
 
  The parameters varied in the topology described in Fig. 1 were 
the aggregate rate of cross-traffic, the TCP variants, and the size of 
the file being transferred. The aggregate cross-traffic ranged from no 
cross-traffic to the bottleneck bandwidth of 1Mbps. The aggregate 
cross-traffic was found to be directly proportional to the number of 
packet losses generated. The packet losses in the simulations were 
only due to network congestion. The TCP variants were chosen using 
an incremental combination of the TCP enhancements considered in 
this paper. We benchmarked TCP NewReno as the TCP variant to 
base our comparisons. TCP NewReno had recently been observed to 
be the most popular TCP variant in the Internet [PF01]. Using TCP 
SACK as the starting point of the TCP enhancements in study, we 
cumulatively added each TCP enhancement in the order of their 
standardization in the IETF. The TCP SACK and TCP NewReno 
variants used an initial window of one packet. The TCP variants used 
in the simulations are as follows. The acronym in parentheses is used 
to refer to the respective variant in the rest of this paper. 
 

(a) TCP NewReno {NewReno} 
(b) TCP SACK {SACK} 
(c) Increased Initial Window with (b) {SACK-IW} 
(d) Limited Transmit with (c) {SACK-IW-LT} 
(e) Appropriate Byte Counting (L=1) with (d)  

{SACK-IW-LT-ABC1} 
(f) Early Retransmit with (e) {SACK-IW-LT-ABC1-ER} 

 
B. Web Transfers 
 
 To assess the effect of TCP enhancements on web transfers, we 
show the results for transfer of a single 20K and a single 100K file. 
During the TBIT tests we observed that the base web page size used 
in the Internet has significant variance. A plain text web page could 
be as low as 10K in size while a web page with several objects 
(pictures, thumbnails, audio, etc) could go up to 500K in size. We 
thus chose a sample of 20K and 100K as representatives for web 
transfers. We varied the aggregate cross-traffic arrival rate to simulate 
packet drops for the TCP flow. 
 Fig. 2 shows the transfer time of a 20K file, as a function of the 
aggregate cross-traffic arrival rate, using the different TCP variants. 
Fig. 3(a) plots the number of packet drops seen by a TCP flow for 
different levels of cross-traffic. Each point in the graphs represents an 
average of multiple runs. The results for cross-traffic arrival rates 
below 800Kbps have not been plotted in Fig. 2 as the TCP flow did 
not experience any loss below 800Kbps, leading to nearly same 
transfer times for all the variants. At higher levels of cross-traffic 
NewReno slightly outperforms SACK. SACK-IW outperforms both 
SACK and NewReno and is the main contributor for better 
performance of the cumulative enhancements. This is because short 
transfers are on the order of few RTTs and saving one RTT by using 
larger a initial window significantly reduces transfer times. SACK-IW  
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Fig. 2. Transfer Time vs. Aggregate Cross-Traffic for a 20K transfer 
 
and all the later cumulative variants use an initial window of 3 
packets as specified in [AFP+02], whereas NewReno and SACK use 
an initial window of 1 packet. SACK-IW-LT uses Limited Transmit, 
that allows to send new data on duplicate Acks. It can be seen from 
Fig. 2 that SACK-IW-LT outperforms SACK and NewReno for all 
levels of cross-traffic and performs almost the same or better than 
SACK-IW. The effect of ABC is minimal, especially for lower loss 
rates, as short transfers typically remain in slow start, while ABC with 
an L=1 is helpful for transfers that spend majority of their time in the 
congestion avoidance phase of TCP congestion control. In the next 
section of bulk data transfers, we notice the effect of ABC more 
prominently and explain the rationale behind it. In Fig. 2, the effect of 
Early Retransmit (ER) is also minimal as ER gets invoked only in the 
special case at the end of the file transfers (The SACK-IW-LT-ABC1-
ER in the plot overlaps on the SACK-IW-LT-ABC1). The effect of 
ER will be more predominant for transfers less than 4 packets (5K file 
transfers) where ER may be able to avoid expensive timeouts in the 
event of packet loss. 

Fig. 3(b) shows the CDF of the number of times Limited Transmit 
(LT) and ER get invoked vs. the fraction of the total number of runs. 
 
 

 
 
 
 
 
 

 
 
 

        (a)              (b)     
 
Fig. 3. (a) Aggregate Cross-Traffic (Kbps) vs. Average number of drops for a   
                 20K transfer 
          (b) CDF of the Number of times Limited Transmit or Early Retransmit  

      get invoked vs. Fraction of Runs for a 20K transfer. 
 
The total number of runs, on which the fraction in Fig. 3(b) is 
calculated, is the collection of all LT and ER enabled runs for the LT 
and ER curve, respectively. As expected, ER gets invoked only once, 
and for only 3% of the runs. However, it is important to note that 
although ER occurs rather rarely, it does make its case as the 3% of 
the total runs where ER fast retransmits the missing packet, may have 
suffered a timeout without ER. For small file transfers, a single 
timeout could significantly increase the transfer time. For 51% of the 
runs, LT does not get invoked. This is because for cross-traffic levels 

below 800Kbps no losses were seen by the TCP flow. For the 
remaining 49% of the runs, LT gets invoked “at least” once. Each 
time LT gets invoked, a new data segment can be transmitted, thus 
improving (i.e. reducing) the total transfer time as seen in Fig. 1. 
 Fig. 4 shows the transfer time for a 100K file vs. the aggregate 
cross-traffic arrival rate. SACK outperforms NewReno slightly for 
cross-traffic rates beyond 800Kbps. The increase of initial cwnd has 
no significant effect on transfer time. LT and ABC reduce the transfer 
time by over 10 seconds for aggregate cross-traffic arrival rates of 
1Mbps. While LT allows for sending new data on duplicate Acks 
yielding in increased goodput, ABC allows better evolution of cwnd 
in congestion avoidance. Without ABC, a TCP sender will increase its 
cwnd by one MSS in every two RTTs (due to delayed Acks), when in 
congestion avoidance. An ABC sender will be able to increase its 
cwnd by one MSS once per RTT as the cwnd is increased based on 
the number of bytes acknowledged rather than number of Acks 
received. The reverse path cross-traffic causes loss of Acks similar to 
the loss of data in the forward path. Loss of Acks in congestion 
avoidance may not allow cwnd to be increased once  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Transfer Time vs. Aggregate Cross-Traffic for a 100K transfer 
 
per two RTTs for a TCP sender without ABC. On the other hand a 
TCP sender with ABC is not affected by the loss of Acks in 
congestion avoidance as long as an Ack cumulatively acknowledging 
previous packets arrives. Since the 100K flow operates in congestion 
avoidance for most of its transfer, ABC causes better evolution of 
cwnd reducing the transfer time. 
Fig. 5(a) shows the average number of data packet drops as a function 
of the cross-traffic arrival rate. Starting from 800Kbps of cross-traffic, 
the losses start increasing steadily, matched by the increased transfer 
time as seen in Figure 4. As the file size to be transferred increased  
 
 
 
 
 
 
 
 
 
 
 

(a)             (b)  
 

Fig. 5. (a) Aggregate Cross-Traffic (Kbps) vs. Average number of drops for a   
                 100K transfer 
          (b) CDF of the Number of times Limited Transmit or Early Retransmit  

 get invoked vs. Fraction of Runs for a 100K transfer. 
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from 20K to 100K, a greater number of LT events should be 
generated. This can be seen in Figure 5(b), where all sample runs 
generated at least two LT events, and approximately 20% of the runs 
generated more than eight LT events. ER gets invoked only once, and 
for only 2.5% of the runs. 
 
B. Bulk Transfers 
 
 While web transfers present their own challenges, bulk transfers 
are also an important metric for evaluating the performance of TCP 
variants. We performed a bulk transfer of 10M to assess the 
throughput achieved by the TCP variants. The aggregate cross-traffic 
was varied to simulate packet drops. 
 Fig. 6 shows the transfer time taken by the TCP variants for a 10M 
transfer as a function of the loss rate as seen by the TCP flow. The 
loss rate is represented as a fraction of the total number of packets 
dropped out of the total number of “new” data packets sent.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Transfer Time vs. Fraction of Packet Loss for a 10M transfer 
 
Fig. 6 shows that NewReno and SACK perform the same for loss 
rates below 9%, but as the loss rates increase further, SACK 
outperforms NewReno. While the loss rates beyond 10% may seem 
excessive for the Internet, the plot shown in Fig. 1 illustrates the 
pattern of performance of the TCP variants for bulk transfers. The 
SACK-IW curve lies exactly over the SACK curve thus showing that 
a higher initial cwnd makes little difference for bulk transfers. SACK-
IW-LT yields in better transfer times for higher loss rates as well as 
for loss rates below 10%. Thus bulk transfers clearly gain by the 
Limited Transmit feature. Bulk transfers spend most of the connection 
lifetime in congestion avoidance. As described before ABC allows for 
better evolution of cwnd in congestion avoidance for receivers that 
generate delayed Acks and in situations of Ack loss. A TCP sender 
that supports ABC increases its cwnd by one MSS once per RTT, as 
opposed to once per two RTTs that a TCP sender without ABC would 
increase. Loss of Acks leads to yet slower cwnd evolution for a TCP 
sender without ABC. The performance improvement with ABC is 
evident in Fig. 6 where SACK-IW-LT-ABC1 reduces the transfer 
time as compared to SACK-IW-LT. For bulk data transfers ER does 
not offer any advantage as the scenario in which ER can be invoked 
occurs rarely at end of transfers. Hence SACK-IW-LT-ABC1-ER and 
SACK-IW-LT-ABC1 overlap in Fig. 6.  
 We plot the CDF of the number of times LT and ER get invoked 
for the bulk transfer vs. the fraction of total number of runs. It is 
evident from Fig. 7 that the effect of LT is pronounced on bulk 
transfers where approximately 50% of the total runs invoked LT more 
than 400 times in their transfers. More than 90% of the runs invoked 

LT 100 times in their transfers. While the effect of ER on transfer 
time is minimal, we still saw 2.5% of the runs witness one ER event 
at the end of transfer. ER may be able to save one timeout for 2.5% of 
the runs, although a single timeout at the end of the transfer is 
insignificant relative to the bulk data transfer time. 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 7. CDF of the Number of times Limited Transmit or Early Retransmit  

 get invoked vs. Fraction of Runs for a 10M transfer. 
 

V. CONCLUSIONS AND ONGOING WORK 
 
 This paper presents measurement and evaluation results for a set of 
five recent TCP enhancements: SACK and the loss recovery 
algorithm, Increasing Initial Congestion Window, Limited Transmit, 
Appropriate Byte Counting and Early Retransmit. We developed 
TBIT extensions and performed measurements to determine the 
support of these TCP enhancements in the web server space in the 
Internet. Our findings were that out of the servers that returned 
results: 
 

• Majority of the web servers use the standard initial window of 
two packets. However, 15% of the web servers still use a low 
initial window of one packet. Only 3% of the servers use an 
initial window of 4 packets as allowed by [AFP+02]. 

• While a large number of servers advertise the SACK option, only 
30% of them use the SACK information to perform loss 
recovery. 

• More than 50% servers do not support Limited Transmit. 
• 50% of the web servers support Appropriate Byte Counting, 

while other 50% are still vulnerable to misbehaving “split-
acking” receivers. 

• None of the servers support Early Retransmit.  
 

We performed simulations to assess the performance benefits of 
these TCP enhancements for web and bulk data transfers. Based on 
the results obtained, we make the following observations: 

 
• SACK does not offer any noticeable improvements in the 

transfer time for web transfers. For bulk transfers, SACK reduces 
the transfer time for loss rates above 10%. 

• Increasing initial congestion window improves transfer times for 
small web transfers but offers no advantage for large web 
transfers and bulk transfers.  

• Although a relatively small change to TCP congestion control, 
Limited Transmit is an important feature that improves transfer 
times and gets invoked for all categories of transfers and 
proportionally to the size of the transfer. 

• Appropriate Byte Counting offers protection against 
misbehaving receivers. From our results it also improves the 
transfer time significantly for bulk transfers and for large web 
transfers, in the presence of delayed Acks or Ack loss. 
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• Early Retransmit is a feature that gets invoked consistently for 
3% of the total TCP runs. The main benefits of Early Retransmit 
occur only for short flows such as small web transfers. 

 
Ongoing work includes the following: 
 
• We are currently running the TBIT tests described in this paper 

on a list of 27000 web servers. We plan to perform fingerprinting 
of the operating systems being used by the remote servers, and 
survey the current implementation status of the TCP 
enhancements in the popular operating systems. 

• The TCP-friendly equation [PFT+98], which is the basis for 
TCP-friendly rate control (TFRC) [HFP+03], is based on the 
Reno variant of TCP. We are investigating if the TCP-friendly 
equation is still a correct representative of current TCP, i.e., TCP 
with the enhancements evaluated in this paper. 
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