
On the Prevalence and Evaluation of Recent TCP Enhancements

Sourabh Ladha Paul D. Amer Armando Caro Jr. Janardhan R. Iyengar
Protocol Engineering Lab,

Computer and Information Sciences
University of Delaware

{ladha, amer, acaro, iyengar}@cis.udel.edu

 Abstract - In recent years several enhancements to TCP
congestion control and loss recovery mechanisms have been
proposed and accepted as Internet standards. While each
proposal has been accompanied with related research, a number
of questions remain to be answered both in the research and the
implementer community: (i) What is the current deployment
status of these TCP enhancements in the Internet, (ii) What is the
effect of TCP enhancements on web based transfers, and (iii) How
do bulk data transfers benefit from the cumulative addition of
these TCP enhancements. In this paper, we attempt to answer
these questions. We consider five TCP enhancements: (1)
Selective Acknowledgements (SACK) and the SACK-based loss
recovery algorithm, (2) Increasing Initial Congestion Window, (3)
Limited Transmit, (4) Appropriate Byte Counting, and (5) Early
Retransmit. We present results from active measurements
performed on web servers on the state of deployment of these
enhancements. Our results show that while several web servers
support TCP enhancements, the majority still use previous
standards for congestion control and loss recovery. Using
simulation, we quantify the cumulative effect of these TCP
enhancements on web based and bulk data transfers. We hope
that such an evaluation provides a clearer view of the
applicability of these enhancements, and further motivation for
their implementation.

I. INTRODUCTION

 End-to-end congestion control and loss recovery has interested the
research community for nearly two decades, and still remains one of
the most prominent areas of networking research. TCP, the Internet’s
prevalent transport protocol [MC00], uses congestion control and loss
recovery mechanisms first defined in [JK88] and standardized in
[APS99]. Recently, five modifications to TCP congestion control and
loss recovery mechanisms: (1) Selective Acknowledgments (SACK)
and the SACK-based loss recovery algorithm [MMF+96, BAF+03],
(2) Increasing Initial Congestion Window [AFP+02], (3) Limited
Transmit [ABF01], (4) Appropriate Byte Counting [All03], and (5)
Early Retransmit [AAA+03], have been proposed and accepted as
Internet standards. The focus of these modifications has been to
reduce the retransmission timeouts in TCP or to perform finer loss
recovery. A cumulative assessment of these mechanisms has been
lacking and requires attention due to the following reasons. First,
implementers and vendors need to know the performance incentives
for implementing these enhancements in their TCP stacks and in the
context of their requirements (i.e., for the category of transfers (mice
or elephants) they are interested in). Second, researchers who base
their experiments on TCP need to know if their benchmarks reflect
the current TCP that is deployed in the Internet. In this paper we
attempt to answer these questions.

Several methodologies to measure the support of different TCP
mechanisms at a remote host have been developed over the years.
One such methodology is the TCP Behavior Inference Tool (TBIT)

[TBIT, PF01], which measures the existence of TCP options and
features in remote web servers. TBIT establishes a user level TCP
connection to a remote web server and generates requests for a base
web page. Using the BSD packet filter device [MJ92], TBIT captures
the incoming packets at the user level and prevents them from
reaching the kernel. Using special sequences of packets and by
monitoring the incoming packets, TBIT identifies the TCP protocol
features of the remote web server. The TBIT packets generated cannot
be distinguished from legitimate user traffic, thus providing an
advantage over tools such as NMAP [NMAP] that use special packets
to perform TCP fingerprinting. Thus, TBIT packets have a minimal
chance of being blocked by a server firewall. We developed and
implemented TBIT extensions for Limited Transmit, Appropriate
Byte Counting, and Early Retransmit and used the already
implemented tests for determining Initial Congestion Window and
SACK support. We report on the prevalence of these TCP
enhancements in a small web server space in the Internet. We hope
that these results will help researchers update the benchmarks of their
experiments on the TCP variant prevalent in the Internet [AF99].

Each TCP enhancement discussed in this paper proposes to
improve congestion control and loss recovery. For example, RFC3390
[AFP+02] for Increasing TCP’s Initial Window allows the limit on the
initial window of a new TCP connection to be increased up to 4K
bytes, or roughly three to four packets. Such an increase helps short
transfers and has minimal effect on bulk data transfers. While each of
these standards has been accompanied with related research [All98,
Bal98, PN98, FF96], the cumulative assessment of TCP with all the
enhancements is lacking. In this paper we present an evaluation of
current TCP by benchmarking TCP NewReno and comparing it with
the cumulative addition of TCP enhancements. We present this
evaluation for web based and bulk data transfers with different
transfer sizes. We believe that such an evaluation will provide useful
information to implementers and vendors for considering these
enhancements.

The remainder of this paper is organized as follows. Section II
presents a brief description of the five TCP enhancements under
study. Section III describes the TBIT extensions and the results
obtained from the tests applied to web servers in the Internet. Section
IV describes the simulation methodology and evaluation results.
Section V concludes the paper with a discussion on ongoing and
future work.

II. TCP ENHANCEMENTS

TCP SACK as defined in [MMF+96] extends TCP to include the

new SACK option. TCP SACK receivers can report multiple out-of-
order received packets via this SACK option. TCP SACK senders
retransmit only those packets that have not been acknowledged via
the SACK option. In TCP without SACK, a sender can determine
only a single packet loss per round trip time (RTT). TCP SACK
allows a sender to recover from multiple losses in a single RTT.
Measurement studies showed that while several servers in the Internet

were advertising the SACK option, the SACK information was not
being used to perform finer loss recovery [PF01]. This discovery
pressed the need for laying out a standard based on [FF96] that
presents a conservative loss recovery mechanism for TCP SACK
[BAF+03].
 TCP congestion control as defined in [APS99], restricted TCP
implementations from increasing their initial congestion window
(cwnd) beyond twice the Maximum Segment Size (MSS). Several
scenarios demanded an increase in the value of initial cwnd: (i) short
web based transfers where the web page transfer time is on order of
RTTs, (ii) Long delay TCP connections, as over satellite channels,
where RTTs are in order of seconds, and hence lead to slower
evolution of the cwnd. A new standard specified in [AFP+02]
increases the limit of 2*MSS for the initial cwnd up to 4380 bytes or
roughly three to four packets. The minimum initial cwnd that can be
used by a TCP connection was specified in [AFP+02] to be two
packets, thus reducing the chances of expiring the delayed Ack timer
of the TCP receiver for the first window of packets.
 A TCP receiver on receiving out-of-order packets sends duplicate
acknowledgments (Acks) cumulatively acknowledging the last in-
order segment received. A TCP sender infers loss of data either if it
receives a threshold number of duplicate Acks from the receiver, or if
it does not receive any feedback from the receiver within a
retransmission time out (RTO) interval. The duplicate Ack threshold
of inferring loss is currently specified as three [APS99]. A TCP
sender is not allowed to send new data on the receipt of duplicate
Acks. This leads to scenarios where a sender does not have enough
data outstanding that could generate three duplicate Acks if a loss
occurs, limiting the sender to infer the loss only after RTO amount of
time. A new standard, Limited Transmit [ABF01], allows TCP
senders to send new data on the receipt of first two duplicate Acks.
Limited transmit increases the probability of a sender to receive three
duplicate Acks when a loss does occur, and decreases the chances of
an RTO.
 TCP implementations typically maintain the congestion window
for a connection in packets as opposed to bytes. On receipt of an Ack
that acknowledges new data, TCP senders increase the cwnd by one
packet in slow start, and 1/cwnd packets in congestion avoidance.
Misbehaving or greedy receivers can generate multiple “split” Acks
for a single data packet, thus making the sender increase its cwnd by
several packets [SCW+99]. This aggressive behavior is inappropriate
as it may result in unfair sharing of the network resources between
behaving and misbehaving flows. Appropriate Byte Counting (ABC)
[All03], recently standardized, calls for TCP senders to maintain the
congestion window in bytes rather than packets and base the increase
of cwnd on the number of bytes being acknowledged. While
protecting against misbehaving “split-acking” receivers, ABC also
improves the evolution of cwnd in the case of Ack loss. ABC defines
a limit L that is the maximum amount by which a single Ack can
increase the sender’s cwnd. The standard recommends the
conservative value of L=1*MSS, and allows an experimental value of
L=2*MSS.
 While Limited Transmit helps to reduce the chances of a timeout
when the number of outstanding segments is less than enough to
generate three duplicate Acks, it requires a TCP sender to have new
data to send on the receipt of first two duplicate Acks. Application
limited flows that generate small bursts of traffic may not be able to
take advantage of Limited Transmit and may have to rely on an RTO
to detect packet loss. A recent proposal called Early Retransmit
[AAA+03] allows application limited TCP senders to retransmit data
on the receipt of less than three duplicate Acks, in the hope of
avoiding an expensive RTO. Early Retransmit is currently an Internet
draft within the IETF [AAA+03] and is in the last phases of being
standardized.

III. ACTIVE MEASUREMENTS

 We developed TBIT tests to measure the prevalence of TCP
enhancements among web servers in the Internet. We used the Initial
Congestion Window and SACK tests that were already developed in
the base version of TBIT for our measurements. In the following
discussion we report on the design of the tests and the results
obtained. We assume that the reader is familiar with the basic design
and architecture of TBIT as described in [TBIT, PF01].

A. Methodology

1. Limited Transmit

The TBIT test to determine if a remote server supports Limited
Transmit requires that TBIT be aware of the Initial Congestion
Window (ICW) being used by the remote server. Once the ICW is
determined the following test can be used to probe a web server for
Limited Transmit support.

• TBIT establishes a TCP connection with the remote server.
• TBIT sends the base web page request to the remote server.
• The remote server starts sending the base web page to the TBIT

client.
• TBIT sends an Ack for the 1st packet.
• TBIT drops the 2nd packet.
• TBIT sends a duplicate Ack (indicating it is waiting for packet 2)

in response to the 3rd packet.
• TBIT does not acknowledge any further packets.
• TBIT monitors the incoming packets incrementing the "highest

packet number" for every new data packet received until the 1st
retransmission.

• A remote server of a given ICW supports Limited Transmit
when the highest packet number received by TBIT is:

(i) ICW = 1, highest packet = 4
 (ii) ICW = 2, highest packet = 5

…
(n) ICW = n, highest packet = n+3

• If the highest packet received from a server of ICW='n' is less
than n+3, Limited Transmit is not supported by the remote
server;

• If the highest packet received from a server of ICW='n' is greater
than n+3, TBIT test exits without conclusion;

2. Appropriate Byte Counting (ABC)

We tested the prevalence of ABC in TCP web servers using two
tests. The first test determines if a remote server supports ABC. The
second test determines the value of L being used by the servers that
support ABC. Both tests require that TBIT be aware of the ICW being
used by the remote server. The first TBIT test to determine if a remote
server supports ABC is:

• TBIT establishes a TCP connection with the remote server.
• TBIT sends the base web page request to the remote server.
• The remote server starts sending the base web page.
• TBIT sends two split Acks for the 1st packet, each of them

acknowledging half of the 1st packet.
• TBIT does not acknowledge any more packets.
• TBIT monitors the incoming packets incrementing the "highest

packet number" for every new data packet received until the 1st
retransmission.

• If the retransmission contains a sequence number less than that
of the 2nd packet, TBIT exits without conclusion.

• A remote server of a given ICW does not support ABC when the
highest packet number received by TBIT is:

(i) ICW = 1, highest packet > 3
(ii) ICW = 2, highest packet > 4

…
 (n) ICW = n, highest packet > n+2

• If for an ICW of ‘n’ packets, the highest packet number received
is less than ‘n+3’, the remote server supports ABC.

 The second TBIT test for ABC is used to measure the value of L
being used by the servers supporting ABC. The test is as follows.

• TBIT establishes a TCP connection with the remote server
• TBIT sends the base web page request to the remote server.
• The remote server starts sending the base web page.
• TBIT sends an Ack for the 1st packet.
• TBIT sends a delayed Ack for the 2nd and 3rd packet.
• TBIT does not acknowledge any more packets.
• TBIT monitors the incoming packets incrementing the "highest

packet number" for every new data packet received till the 1st
retransmission.

• If the retransmission contains a sequence number less than that
of the 4th packet, TBIT exits without conclusion.

• A remote server of a given ICW uses a value of L for
Appropriate Byte Counting (ABC) when the highest packet
number received by TBIT is:
(i) ICW = 1, highest packet = 6, L=1; highest packet = 7, L=2

 (ii) ICW = 2, highest packet = 7, L=1; highest packet = 8, L=2
…

(n) ICW=n, highest packet=n+5, L=1; highest packet=n+6, L=2
• If the highest packet received for ICW='n' is greater than n+6,

TBIT test exits without conclusion;
• If the highest packet received for ICW='n' is less than n+5, TBIT

test exits without conclusion;

3. Early Retransmit

 The Early Retransmit mechanism gets invoked in scenarios where
a TCP sender does not have any new data to send and the amount of
outstanding data is less than 4*MSS. To generate this scenario, the
TBIT test required a special byte-range HTTP request [FGM+99] to
be generated by the TBIT client. The byte range request will ensure
that the server sends less than 4*MSS packets, to cause a scenario
where the support for Early Retransmit can be tested. The description
of the test is as follows.

• TBIT establishes a TCP connection with the remote server
• TBIT sends the base page byte range request to the remote

server, requesting 2*MSS bytes (This will generate 3 packets
from the remote server: 2*MSS bytes of data + HTTP header).

• The remote server starts sending the base web page.
• TBIT sends an Ack for the 1st packet.
• TBIT drops the 2nd packet.
• TBIT sends a duplicate Ack (indicating it is waiting for packet 2)

in response to the 3rd packet.
• In sequence TBIT now sends an Ack for all the packets.
• TBIT monitors the incoming packets.
• If TBIT receives a retransmission for the 2nd packet, the remote

server supports Early Retransmit;
else, the remote server does not support Early Retransmit;

B. Results

We performed the TBIT tests described above on a list of top 500
global web sites based on the rankings by Alexa’s website [ALEXA].
Clearly this sample is not statistically significant1. For every server,
we ran each TBIT test five times. We considered the test on a server
valid if and only if four or more of these five tests returned the same
result. The remaining servers were eliminated from the results for that
particular test. Possible sources of error included packet reordering,
unexpected drop, no response from the server, besides others [PF01].
The MSS used for the tests was 128 bytes with an exception for the
Early Retransmit test that used an MSS of 1000 bytes. The results of
the test are shown in Table 1.

We first ran the Initial Congestion Window test on the list of web
servers. We found that 62 of the 423 web servers that returned results
still used an initial window of one packet. This small number is
surprising as TCP congestion control standardized the use of initial
window of 2 packets several years back [APS99]. Of the remaining
361 web servers, 311 used an initial window of two packets. The use
of initial congestion windows higher than two was found to be
minimal. While 25 web servers used an initial window of three
packets, only 17 web servers used initial window of four

TABLE I
TBIT TEST RESULTS

packets. The maximum initial window allowed by [AFP+02], for a
TCP connection with an MSS of 128 bytes is four packets. Few web
servers used an initial window of more than 4 packets. Interestingly,
the web site http://www.netvigator.com used the highest initial
window of 12 packets! We are currently using fingerprinting tools to
determine the operating systems being run by the web servers.

Surprisingly, a large numbers of servers advertised the SACK
option but less than one third of these servers utilized the SACK
information to perform sender side loss recovery. We found that 344
out of the 486 web servers that returned results advertised the SACK
option. The remaining 142 web servers did not advertise the SACK
option and hence were not included in the SACK utilization test. We
tested the 344 web servers that advertised SACK for sender side
SACK behavior. Only 90 out of the 344 web servers utilized the
SACK information to perform sender side loss recovery.
 The Limited Transmit test required that the initial window of the
remote server be known. From the Initial Window test, we knew the

Category of TBIT test/
TCP feature

Number of web servers
supporting the feature

Initial Window (= 1) 62
Initial Window (= 2) 311
Initial Window (= 3) 25
Initial Window (= 4) 17
Initial Window (> 4) 8

 SACK Advertised 344
SACK Information Used 90

Limited Transmit Supported 99
Appropriate Byte Counting

(ABC)
100

ABC with L = 1 80
ABC with L = 2 0
Early Retransmit 0

initial window being used by 423 web servers. 224 out of the 423 web
servers returned results for the Limited Transmit test. We found that
99 of the 224 web servers that returned results supported Limited
Transmit, while 125 web servers did not support Limited Transmit.
 The ABC tests required that the initial window of the remote server
be known. Thus the test to determine if a remote server supports ABC
was run on a list of 423 web servers. Out of the 200 servers that
returned results, 100 supported ABC, while the remaining 100 did not
support ABC. It is surprising that even though the threat of a
misbehaving receiver is large, 50% of the servers do not support
ABC. A misbehaving receiver (i.e., client) can send out multiple split
Acks for a single data packet and make a non-ABC sender (i.e.
server) open up its congestion window unfairly in comparison to
conforming flows. Our next test involved testing the value of the limit
L (as defined in [All03]) being used by servers that support ABC. We
found that out of the 80 servers that returned results, all of them used
L = 1. None of the servers used L = 2. This result is in spirit of the
recommendation given in [All03].
 The Early Retransmit test was run on the entire list of 500 web
servers. The Early Retransmit test required that the server supports
byte-range request specified in HTTP/1.1 [FGM+99]. Out of the 500
web servers only 80 servers returned results, since most of the servers
did not support the byte-range request. None of the 80 web servers
supported Early Retransmit!

IV. SIMULATION RESULTS AND ANALYSIS

A. Methodology

 To assess the cumulative effects of the five TCP protocol changes
we performed simulations using the Network Simulator (ns2) [NS].
The topology used for the simulations is illustrated in Fig. 1. All the
links used in the topology are full duplex. A single TCP source (TCP
Sender in the topology) is connected to the drop-tail router R1. The
link connecting the TCP source to the router is of capacity 5Mbps and
has a one-way propagation delay of 1ms. A single TCP sink (TCP
Receiver in the topology) is connected to the drop-tail router R2. The
link connecting the TCP sink to the router is of capacity 5Mbps and
has a one-way propagation delay of 1ms. To resemble the observed
nature of traffic on data networks [LTW+93], we use self-similar
cross-traffic. To generate self-similar cross-traffic, we use four cross-
traffic nodes, each having eight Pareto ON-OFF traffic generators
connected to routers R1 and R2. Each Pareto source has an average
ON time of 1ms and OFF time of 9ms. Each cross-traffic node is
connected to a router (R1 or R2) via a 5Mbps link with a propagation
delay randomized to be between 1ms and 5ms. The Pareto sources
connected to the router R1 generate the forward path cross-traffic for
the TCP data flow, and the Pareto sources connected to the router R2
generate the reverse path cross-traffic for the TCP Ack flow. The
cross-traffic packet sizes are chosen to resemble the distribution found
in the Internet [CAIDA]: 50% are 44B, 25% are 576B, and 25% are
1500B. Thus the average packet size for the cross-traffic is 541B. A
link of capacity 1Mbps with a one-way propagation delay of 35ms
(approximate propagation delay between US coast to coast) forms the
core link connecting router R1 and R2. The buffer capacity at routers
R1 and R2 for the core link was set to twice the bandwidth-delay
product (BDP) of the core link. Using the 2*BDP product and the
average packet size of 541B, the buffer size at each of the routers R1
and R2 was set to 16 packets.
 The Maximum Transmission Unit (MTU) for all links was set to
the standard Ethernet MTU of 1500B. The TCP sender used an MSS
of 1460B. The TCP receiver used delayed Acks with a delayed Ack
timer of 200ms. For all simulations described in this paper, the cross-

traffic was allowed to run for 10s before the TCP sender began
sending data.

Fig. 1. Network topology for simulations

 The parameters varied in the topology described in Fig. 1 were
the aggregate rate of cross-traffic, the TCP variants, and the size of
the file being transferred. The aggregate cross-traffic ranged from no
cross-traffic to the bottleneck bandwidth of 1Mbps. The aggregate
cross-traffic was found to be directly proportional to the number of
packet losses generated. The packet losses in the simulations were
only due to network congestion. The TCP variants were chosen using
an incremental combination of the TCP enhancements considered in
this paper. We benchmarked TCP NewReno as the TCP variant to
base our comparisons. TCP NewReno had recently been observed to
be the most popular TCP variant in the Internet [PF01]. Using TCP
SACK as the starting point of the TCP enhancements in study, we
cumulatively added each TCP enhancement in the order of their
standardization in the IETF. The TCP SACK and TCP NewReno
variants used an initial window of one packet. The TCP variants used
in the simulations are as follows. The acronym in parentheses is used
to refer to the respective variant in the rest of this paper.

(a) TCP NewReno {NewReno}
(b) TCP SACK {SACK}
(c) Increased Initial Window with (b) {SACK-IW}
(d) Limited Transmit with (c) {SACK-IW-LT}
(e) Appropriate Byte Counting (L=1) with (d)

{SACK-IW-LT-ABC1}
(f) Early Retransmit with (e) {SACK-IW-LT-ABC1-ER}

B. Web Transfers

 To assess the effect of TCP enhancements on web transfers, we
show the results for transfer of a single 20K and a single 100K file.
During the TBIT tests we observed that the base web page size used
in the Internet has significant variance. A plain text web page could
be as low as 10K in size while a web page with several objects
(pictures, thumbnails, audio, etc) could go up to 500K in size. We
thus chose a sample of 20K and 100K as representatives for web
transfers. We varied the aggregate cross-traffic arrival rate to simulate
packet drops for the TCP flow.
 Fig. 2 shows the transfer time of a 20K file, as a function of the
aggregate cross-traffic arrival rate, using the different TCP variants.
Fig. 3(a) plots the number of packet drops seen by a TCP flow for
different levels of cross-traffic. Each point in the graphs represents an
average of multiple runs. The results for cross-traffic arrival rates
below 800Kbps have not been plotted in Fig. 2 as the TCP flow did
not experience any loss below 800Kbps, leading to nearly same
transfer times for all the variants. At higher levels of cross-traffic
NewReno slightly outperforms SACK. SACK-IW outperforms both
SACK and NewReno and is the main contributor for better
performance of the cumulative enhancements. This is because short
transfers are on the order of few RTTs and saving one RTT by using
larger a initial window significantly reduces transfer times. SACK-IW

P8

R1 R21Mbps 35ms

5Mbps 1-5ms 5Mbps 1-5ms

P2 P8

TCP
Sender

P1 P2

TCP
Receiver

1

2

3

4

1

2

3

4
5M

bps
 1

ms 5Mbps 1ms

P1 P8

R1 R21Mbps 35ms

5Mbps 1-5ms 5Mbps 1-5ms

P2 P8

TCP
Sender

P1 P2

TCP
Receiver

1

2

3

4

1

2

3

4
5M

bps
 1

ms 5Mbps 1ms

P1

Fig. 2. Transfer Time vs. Aggregate Cross-Traffic for a 20K transfer

and all the later cumulative variants use an initial window of 3
packets as specified in [AFP+02], whereas NewReno and SACK use
an initial window of 1 packet. SACK-IW-LT uses Limited Transmit,
that allows to send new data on duplicate Acks. It can be seen from
Fig. 2 that SACK-IW-LT outperforms SACK and NewReno for all
levels of cross-traffic and performs almost the same or better than
SACK-IW. The effect of ABC is minimal, especially for lower loss
rates, as short transfers typically remain in slow start, while ABC with
an L=1 is helpful for transfers that spend majority of their time in the
congestion avoidance phase of TCP congestion control. In the next
section of bulk data transfers, we notice the effect of ABC more
prominently and explain the rationale behind it. In Fig. 2, the effect of
Early Retransmit (ER) is also minimal as ER gets invoked only in the
special case at the end of the file transfers (The SACK-IW-LT-ABC1-
ER in the plot overlaps on the SACK-IW-LT-ABC1). The effect of
ER will be more predominant for transfers less than 4 packets (5K file
transfers) where ER may be able to avoid expensive timeouts in the
event of packet loss.

Fig. 3(b) shows the CDF of the number of times Limited Transmit
(LT) and ER get invoked vs. the fraction of the total number of runs.

 (a) (b)

Fig. 3. (a) Aggregate Cross-Traffic (Kbps) vs. Average number of drops for a
 20K transfer
 (b) CDF of the Number of times Limited Transmit or Early Retransmit

 get invoked vs. Fraction of Runs for a 20K transfer.

The total number of runs, on which the fraction in Fig. 3(b) is
calculated, is the collection of all LT and ER enabled runs for the LT
and ER curve, respectively. As expected, ER gets invoked only once,
and for only 3% of the runs. However, it is important to note that
although ER occurs rather rarely, it does make its case as the 3% of
the total runs where ER fast retransmits the missing packet, may have
suffered a timeout without ER. For small file transfers, a single
timeout could significantly increase the transfer time. For 51% of the
runs, LT does not get invoked. This is because for cross-traffic levels

below 800Kbps no losses were seen by the TCP flow. For the
remaining 49% of the runs, LT gets invoked “at least” once. Each
time LT gets invoked, a new data segment can be transmitted, thus
improving (i.e. reducing) the total transfer time as seen in Fig. 1.
 Fig. 4 shows the transfer time for a 100K file vs. the aggregate
cross-traffic arrival rate. SACK outperforms NewReno slightly for
cross-traffic rates beyond 800Kbps. The increase of initial cwnd has
no significant effect on transfer time. LT and ABC reduce the transfer
time by over 10 seconds for aggregate cross-traffic arrival rates of
1Mbps. While LT allows for sending new data on duplicate Acks
yielding in increased goodput, ABC allows better evolution of cwnd
in congestion avoidance. Without ABC, a TCP sender will increase its
cwnd by one MSS in every two RTTs (due to delayed Acks), when in
congestion avoidance. An ABC sender will be able to increase its
cwnd by one MSS once per RTT as the cwnd is increased based on
the number of bytes acknowledged rather than number of Acks
received. The reverse path cross-traffic causes loss of Acks similar to
the loss of data in the forward path. Loss of Acks in congestion
avoidance may not allow cwnd to be increased once

Fig. 4. Transfer Time vs. Aggregate Cross-Traffic for a 100K transfer

per two RTTs for a TCP sender without ABC. On the other hand a
TCP sender with ABC is not affected by the loss of Acks in
congestion avoidance as long as an Ack cumulatively acknowledging
previous packets arrives. Since the 100K flow operates in congestion
avoidance for most of its transfer, ABC causes better evolution of
cwnd reducing the transfer time.
Fig. 5(a) shows the average number of data packet drops as a function
of the cross-traffic arrival rate. Starting from 800Kbps of cross-traffic,
the losses start increasing steadily, matched by the increased transfer
time as seen in Figure 4. As the file size to be transferred increased

(a) (b)

Fig. 5. (a) Aggregate Cross-Traffic (Kbps) vs. Average number of drops for a
 100K transfer
 (b) CDF of the Number of times Limited Transmit or Early Retransmit

 get invoked vs. Fraction of Runs for a 100K transfer.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10

No. of times Invoked

C
D

F-
 F

ra
ct

io
n

of
 R

un
s

LT
ER

0
1
2
3
4
5
6
7

260 596 801 925 975 1111 1174

Aggregate Cross Traffic (Kbps)

A
ve

ra
ge

 N
o.

 o
f D

ro
ps

20K

0

5

10

15

20

260 596 801 925 975 1111

Average Cross Traffic Rate (Kbps)

A
ve

ra
ge

 N
o.

 o
f D

ro
ps 100K

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

No. of times Invoked

C
D

F
- F

ra
ct

io
n

of
 R

un
s

LT
ER

from 20K to 100K, a greater number of LT events should be
generated. This can be seen in Figure 5(b), where all sample runs
generated at least two LT events, and approximately 20% of the runs
generated more than eight LT events. ER gets invoked only once, and
for only 2.5% of the runs.

B. Bulk Transfers

 While web transfers present their own challenges, bulk transfers
are also an important metric for evaluating the performance of TCP
variants. We performed a bulk transfer of 10M to assess the
throughput achieved by the TCP variants. The aggregate cross-traffic
was varied to simulate packet drops.
 Fig. 6 shows the transfer time taken by the TCP variants for a 10M
transfer as a function of the loss rate as seen by the TCP flow. The
loss rate is represented as a fraction of the total number of packets
dropped out of the total number of “new” data packets sent.

Fig. 6. Transfer Time vs. Fraction of Packet Loss for a 10M transfer

Fig. 6 shows that NewReno and SACK perform the same for loss
rates below 9%, but as the loss rates increase further, SACK
outperforms NewReno. While the loss rates beyond 10% may seem
excessive for the Internet, the plot shown in Fig. 1 illustrates the
pattern of performance of the TCP variants for bulk transfers. The
SACK-IW curve lies exactly over the SACK curve thus showing that
a higher initial cwnd makes little difference for bulk transfers. SACK-
IW-LT yields in better transfer times for higher loss rates as well as
for loss rates below 10%. Thus bulk transfers clearly gain by the
Limited Transmit feature. Bulk transfers spend most of the connection
lifetime in congestion avoidance. As described before ABC allows for
better evolution of cwnd in congestion avoidance for receivers that
generate delayed Acks and in situations of Ack loss. A TCP sender
that supports ABC increases its cwnd by one MSS once per RTT, as
opposed to once per two RTTs that a TCP sender without ABC would
increase. Loss of Acks leads to yet slower cwnd evolution for a TCP
sender without ABC. The performance improvement with ABC is
evident in Fig. 6 where SACK-IW-LT-ABC1 reduces the transfer
time as compared to SACK-IW-LT. For bulk data transfers ER does
not offer any advantage as the scenario in which ER can be invoked
occurs rarely at end of transfers. Hence SACK-IW-LT-ABC1-ER and
SACK-IW-LT-ABC1 overlap in Fig. 6.
 We plot the CDF of the number of times LT and ER get invoked
for the bulk transfer vs. the fraction of total number of runs. It is
evident from Fig. 7 that the effect of LT is pronounced on bulk
transfers where approximately 50% of the total runs invoked LT more
than 400 times in their transfers. More than 90% of the runs invoked

LT 100 times in their transfers. While the effect of ER on transfer
time is minimal, we still saw 2.5% of the runs witness one ER event
at the end of transfer. ER may be able to save one timeout for 2.5% of
the runs, although a single timeout at the end of the transfer is
insignificant relative to the bulk data transfer time.

Fig. 7. CDF of the Number of times Limited Transmit or Early Retransmit

 get invoked vs. Fraction of Runs for a 10M transfer.

V. CONCLUSIONS AND ONGOING WORK

 This paper presents measurement and evaluation results for a set of
five recent TCP enhancements: SACK and the loss recovery
algorithm, Increasing Initial Congestion Window, Limited Transmit,
Appropriate Byte Counting and Early Retransmit. We developed
TBIT extensions and performed measurements to determine the
support of these TCP enhancements in the web server space in the
Internet. Our findings were that out of the servers that returned
results:

• Majority of the web servers use the standard initial window of
two packets. However, 15% of the web servers still use a low
initial window of one packet. Only 3% of the servers use an
initial window of 4 packets as allowed by [AFP+02].

• While a large number of servers advertise the SACK option, only
30% of them use the SACK information to perform loss
recovery.

• More than 50% servers do not support Limited Transmit.
• 50% of the web servers support Appropriate Byte Counting,

while other 50% are still vulnerable to misbehaving “split-
acking” receivers.

• None of the servers support Early Retransmit.

We performed simulations to assess the performance benefits of
these TCP enhancements for web and bulk data transfers. Based on
the results obtained, we make the following observations:

• SACK does not offer any noticeable improvements in the

transfer time for web transfers. For bulk transfers, SACK reduces
the transfer time for loss rates above 10%.

• Increasing initial congestion window improves transfer times for
small web transfers but offers no advantage for large web
transfers and bulk transfers.

• Although a relatively small change to TCP congestion control,
Limited Transmit is an important feature that improves transfer
times and gets invoked for all categories of transfers and
proportionally to the size of the transfer.

• Appropriate Byte Counting offers protection against
misbehaving receivers. From our results it also improves the
transfer time significantly for bulk transfers and for large web
transfers, in the presence of delayed Acks or Ack loss.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 50 86 88 90 96 140 148 150 156 242 400 501 600 700 801 831

No. of times Invoked

C
D

F
- F

ra
ct

io
n

of
 R

un
s

LT
ER

• Early Retransmit is a feature that gets invoked consistently for
3% of the total TCP runs. The main benefits of Early Retransmit
occur only for short flows such as small web transfers.

Ongoing work includes the following:

• We are currently running the TBIT tests described in this paper

on a list of 27000 web servers. We plan to perform fingerprinting
of the operating systems being used by the remote servers, and
survey the current implementation status of the TCP
enhancements in the popular operating systems.

• The TCP-friendly equation [PFT+98], which is the basis for
TCP-friendly rate control (TFRC) [HFP+03], is based on the
Reno variant of TCP. We are investigating if the TCP-friendly
equation is still a correct representative of current TCP, i.e., TCP
with the enhancements evaluated in this paper.

DISCLAIMER

Prepared through collaborative participation in the Communication
and Network Consortium sponsored by the U.S. Army Research
Laboratory under the Collaborative Technology Alliance Program,
Cooperative Agreement DAAD19-01-2-0011. The U.S. Government
is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation thereon. The views
and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or the
U.S. Government.
 Research supported, in part, by the University Research Program,
Cisco Systems, Inc.

REFERENCES

[AAA+03] M. Allman, K. Avrachenkov, U. Ayesta, J. Blanton, Early
Retransmit for TCP and SCTP. draft-allman-tcp-early-rexm-03, Dec 03.

[ABF01] M. Allman, H. Balakrishnan, S. Floyd, Enhancing TCP's Loss
Recovery Using Limited Transmit. RFC 3042, Jan 01.

[AF99] M. Allman, A. Falk, On the Effective Evaluation of TCP. ACM
Computer Communication Review, 29(5), Oct 99.

[AFP+02] M. Allman, S. Floyd, C. Partridge, Increasing TCP’s Initial
Window. RFC3390, Oct 02.

[All98] M. Allman. On the Generation and Use of TCP Acknowledgments.
ACM Computer Communication Review, 28(5), Oct 98

[All03] M. Allman, TCP Congestion Control with Appropriate Byte Counting
(ABC). RFC 3465, Feb 03.

[ALEXA] Global Top 500 Web Sites. http://www.alexa.com.

[APS99] M. Allman, V. Paxson, W. Stevens. TCP Congestion Control. RFC
2581, Apr 99.

[BAF+03] E. Blanton, M. Allman, K. Fall, L. Wang, A Conservative Selective
Acknowledgment (SACK)-based Loss Recovery Algorithm for TCP. RFC3517,
Apr 03.

[Bal98] H. Balakrishnan, Challenges to Reliable Data Transport over
Heterogeneous Wireless Networks. Ph.D. Thesis, University of California at
Berkeley, Aug 98.

[CAIDA] CAIDA: Packet Sizes and Sequencing, Mar 98.
http://traffic.caida.org.

[CMT98] K. Claffy, G. Miller, and K. Thompson, The Nature of the Beast:
Recent Traffic Measurements from an Internet Backbone. INET 98, Apr 98.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
T. Berners-Lee, Hypertext Transfer Protocol -- HTTP/1.1. RFC2616, Jun 99.

[FF96] K. Fall, S. Floyd, Simulation-based Comparisons of Tahoe, Reno and
SACK TCP. ACM Computer Communication Review, July 96.

 [FH99] S. Floyd, T. Henderson, The NewReno Modification to TCP's Fast
Recovery Algorithm. RFC 2582, Apr 99.

[HFP+03] M. Handley, S. Floyd, J. Padhye, J. Widmer, TCP Friendly Rate
Control (TFRC) Protocol Specification. RFC3448, Jan 03.

[JK88] V. Jacobson, M. Karels, Congestion Avoidance and Control. In
Proceedings of the Sigcomm 1988, Aug 88

[LTW+93] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the Self-
similar Nature of Ethernet Traffic. In ACM SIGCOMM 1993, Sep 93.

[MC00] S. McCreary, K. Claffy, Trends in Wide Area IP Traffic Patterns - A
View from Ames Internet Exchange. Proc. ITC, September 2000. Monterey,
CA.

[MJ92] S. McCanne, V. Jacobson, The BSD Packet Filter: A New architecture
for User level Data Capture. In Proceedings of 1993 Winter USENIX
Conference, Jan 93.

[MMF+96] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP Selective
Acknowledgement Options. RFC2018, Oct 96.

[NMAP] The NMAP Security Scanner. http://www.insecure.org/nmap.

[NS] The Network Simulator-2. http://www.isi.edu/nsnam.

[PF01] J. Padhye, S. Floyd, Identifying the TCP Behavior of Web Servers. In
Proceedings of Sigcomm 2001, Jun 01.

[PFT+98] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP
throughput: a simple model and its empirical validation. ACM Sigcomm 98,
Sep 1998

[PN98] K. Poduri, K. Nichols, Simulation Studies of Increased Initial TCP
Window Size, RFC 2415, Sep 98.

[SCW+99] S. Savage, N. Cardwell, D. Wetherall, T. Anderson, TCP
Congestion Control with a Misbehaving Receiver. ACM Computer
Communications Review, 29(5): 71-78, October 1999.

[TBIT] The TCP Behavior Inference Tool (TBIT). http://www.icir.org/tbit.

